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1. Intro
2. Infrastructure as Code principles and core concepts
3. Not too short introduction to Terraform
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Infrastructure as Code (IaC) explained

▶ allows to write and execute code
to define, deploy, update, and
destroy your infrastructure

▶ gives rise to mutable infrastructure
as the lifecycle of every infra
resource,component is treated via
code

▶ encourages declarative style of
code wherein the desired end state
and the configuration are present
before final state is provisioned

▶ initially focusing on software, now
also on virtualized hardware
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IaC principles

▶ Version control provides
traceability of changes

▶ Predictability capability to
always provide the same
environment

▶ Consistency multiple instances of
the same baseline code provide a
similar environment

▶ Composability managed in a
modular and abstracted format –
reusability, speed and safety and
automatic documentation
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Categories of IaC tools 1/3

▶ Ad hoc scripts ▶ Configuration management tools
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Categories of IaC tools 2/3

▶ Server Templating Tools (e.g.
Docker, Packer)
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Categories of IaC tools 3/3

▶ Provisioning Tools (e.g. Terraform, Pulumi)

▶ not only VM instances, also VPC (Networking),
Managed Services (e.g. Dataproc), etc.
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IaC differences - „how” vs „what”

▶ Configuration management versus
provisioning

▶ Mutable infrastructure versus
immutable infrastructure – configuration
drift problem – mostly software layer –
deployment in a form of an immutable
template - e.g. Docker image, hard drive
image

▶ Procedural language versus declarative
language

▶ Ansible - imperative („how”)

▶ Terraform - declarative
(„what”)
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Kubernetes ecosystem example - from Pod to SparkApplication

1. resource by resource with a kubectl command (e.g. create, run, scale) –
imperative/low-level

2. Kubernetes Manifest file and kubectl apply -f – declarative
(configuration builtin) but still low-level

3. Helm chart - versioning, templating (separation of configuration), reusability
– declarative/ higher-level

4. Custom Resource Definition (CRD) and Kubernetes Operator (e.g.
SparkOperator) – declarative/highest-level
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Using Multiple Tools Together

▶ Provisioning plus configuration
management

▶ Provisioning plus server
templating

▶ Provisioning plus server
templating plus orchestration (e.g.
Google Kubernetes Engine)
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Terraform - a provisioning tool

▶ cloud-agnostic
▶ open-source written in Golang
▶ cloud/services providers registry
▶ declarative programming

HashiCorp Configuration
Language (HCL)

▶ OpenTofu alternative
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Terraform - a quick start

▶ macOS
brew tap hashicorp/tap
brew install hashicorp/tap/terraform

▶ Linux
curl -fsSL

https://apt.releases.hashicorp.com/gpg
| sudo apt-key add -

↪
↪
sudo apt-add-repository ”deb

[arch=amd64]
https://apt.releases.hashicorp.com
$(lsb_release -cs) main”

↪
↪
↪
sudo apt-get update && sudo apt-get

install terraform↪
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Providers

▶ provider - a plugin with a set of
resource and data types that
defines how changes to resources
of that type are applied to remote
APIs

▶ local utilities for tasks, like
generating random numbers for
unique resource names

▶ version constraints and semanting
versioning

provider ”google” {
project = var.project_name
region = var.region

}
terraform {
required_providers {
google = {

version = ”~> 4.8.0”
}
random = {

source = ”hashicorp/random”
version = ”3.1.2”

}
kubectl = {

source = ”gavinbunney/kubectl”
version = ”1.14.0”

}
}

}
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Resources

▶ Each resource has inputs and
outputs. Inputs are called
arguments, and outputs are called
attributes.

▶ attributes of resources can be
referenced in other resources

▶ there are computed attributes that
are only available after the
resource has been created (e.g.
cloud resource URLs or IDs)
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Data sources

▶ represent a piece of read-only
information that is fetched from
the provider

▶ a way to query the provider’s APIs
for data and to make that data
available to the rest of Terraform
code.

▶ example use case - referencing
Ubuntu image 22.04 (with
updates)

Definition:

Referencing an attribute:
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Variables 1/2

▶ input
variable ”environment” {
type = string
description = ”Development or

production environment”↪
default = ”dev”
validation {
condition = contains([”dev”,

”prod”], var.environment)↪
error_message = ”Valid values

for var: test_variable are
(dev, prod).”

↪
↪

}
}

▶ output
output ”data_generator_lines_num” {
value =

module.data-generator.lines_number↪
description = ”Number of lines in

a generated file”↪
}

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŸ/ŵŸ



Variables 2/2

Passing input variables to a module:
▶ environment variables

TF_VAR_name
▶ ”*.tfvars”
▶

terraform apply -var-file env/dev/project.tfvars
▶ from command prompt
▶ default values

▶ local variables for modules

locals {
service_name = ”forum”
owner = ”Community Team”

}
▶ help avoiding repeating the same values or

expressions multiple times in a configuration
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Implicit and explicit dependencies

▶ implicit
resource ”google_service_account” ”tbd-sa”

{↪
account_id = ”${var.project_name}-sa”

}

resource ”google_project_iam_member”
”tbd-sa-role-bindings” {↪

project = var.project_name
role = ”roles/storage.admin”
member =

”serviceAccount:${google_service_account.tbd-sa.email}”↪
}

▶ explicit
module ”k8s-spark-operator”

{↪
depends_on = [module.gke]
source =

”./modules/spark-on-k8s-operator”↪
}
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Managing state

Locally(default):
▶ terraform.tfstate file in a

JSON format
▶ error-prone
▶ not-secure

Shared storage
▶ requires defining a remote backend

like S3, GCS
▶ encryption at rest and in

transit(storing secrets)
▶ versioning
▶ isolation of environments using a

bucket and/or prefix
▶ team collaboration

terraform init
-backend-config=env/dev/backend.tfvars
-reconfigure

↪
↪
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Modules

▶ any set of Terraform configuration
files in a folder is a module

▶ there is always at least a root
module

▶ code reusability
▶ can be stored locally or in a git

repo
▶ versioning
▶ small, composable and testable
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Modules vs. stacks

▶ stacks are collections of modules that are
logically connected and defined in a single
.tf file or multiple .tf files inside the same
directory

▶ they represent a single deployment unit of
an infrastructure, e.g. environment or a
larger part of it, such as storage system
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Benefits of using stacks

▶ limit radius blast of resource changes
(separation of state files), i.e. human error
boundaries

▶ speed – managing all resources with a
single state file is slow

▶ different resource lifecycles – e.g. storage
vs. compute layer

▶ separate management responsibilities
across team boundaries
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Project layout - a simple case

▶ .terraform scratch dir
▶ env\/dev with environment-specific

variables
▶ modules local shared modules
▶ external git-hosted modules
▶ root module (stack) with main.tf
▶ state isolation per environment (limit

radius blast and performance)
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Loops
count
variable ”subnet_ids” {

type = list(string)
}
resource ”aws_instance” ”server” {

# Create one instance for each subnet
count = length(var.subnet_ids)

ami = ”ami-a1b2c3d4”
instance_type = ”t2.micro”
subnet_id =

var.subnet_ids[count.index]↪

tags = {
Name = ”Server ${count.index}”

}
}

▶ a change in the middle of the list ?

for_each

resource ”google_project_iam_member”
”tbd-editor-supervisors” {↪

for_each = toset([
”user:marek.wiewiorka@gmail.com”,
”user:tgambin@gmail.com”

])
project =

google_project.tbd_project.project_id↪
role = ”roles/editor”
member = each.value

}

▶ set vs list updates
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Tricks with expressions

▶ functions
▶ templating
▶ conditional expressions with

ternary syntax (can be combined
with count for optional modules)

▶ types and values
▶ list comprehensions with for
▶ dynamic blocks (within a resource

or data type, e.g. configuration
key-values)
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Books
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