
InfrastructureasCode (IaC)
in theCloudAge

Marek Wiewiórka, Tomasz Gambin
October 2024

Agenda

1. Intro
2. Infrastructure as Code principles and core concepts
3. Not too short introduction to Terraform

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵ/ŵŸ

Infrastructure as Code (IaC) explained

▶ allows to write and execute code
to define, deploy, update, and
destroy your infrastructure

▶ gives rise to mutable infrastructure
as the lifecycle of every infra
resource,component is treated via
code

▶ encourages declarative style of
code wherein the desired end state
and the configuration are present
before final state is provisioned

▶ initially focusing on software, now
also on virtualized hardware

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵ/ŵŸ

IaC principles

▶ Version control provides
traceability of changes

▶ Predictability capability to
always provide the same
environment

▶ Consistency multiple instances of
the same baseline code provide a
similar environment

▶ Composability managed in a
modular and abstracted format –
reusability, speed and safety and
automatic documentation

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŷ/ŵŸ

Categories of IaC tools 1/3

▶ Ad hoc scripts ▶ Configuration management tools

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŷ/ŵŸ

Categories of IaC tools 2/3

▶ Server Templating Tools (e.g.
Docker, Packer)

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ÿ/ŵŸ

Categories of IaC tools 3/3

▶ Provisioning Tools (e.g. Terraform, Pulumi)

▶ not only VM instances, also VPC (Networking),
Managed Services (e.g. Dataproc), etc.

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ź/ŵŸ

IaC differences - „how” vs „what”

▶ Configuration management versus
provisioning

▶ Mutable infrastructure versus
immutable infrastructure – configuration
drift problem – mostly software layer –
deployment in a form of an immutable
template - e.g. Docker image, hard drive
image

▶ Procedural language versus declarative
language

▶ Ansible - imperative („how”)

▶ Terraform - declarative
(„what”)

Infrastructure as Code (IaC) in the Cloud Age (TBD) ź/ŵŸ

Kubernetes ecosystem example - from Pod to SparkApplication

1. resource by resource with a kubectl command (e.g. create, run, scale) –
imperative/low-level

2. Kubernetes Manifest file and kubectl apply -f – declarative
(configuration builtin) but still low-level

3. Helm chart - versioning, templating (separation of configuration), reusability
– declarative/ higher-level

4. Custom Resource Definition (CRD) and Kubernetes Operator (e.g.
SparkOperator) – declarative/highest-level

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ż/ŵŸ

Using Multiple Tools Together

▶ Provisioning plus configuration
management

▶ Provisioning plus server
templating

▶ Provisioning plus server
templating plus orchestration (e.g.
Google Kubernetes Engine)

Infrastructure as Code (IaC) in the Cloud Age (TBD) ż/ŵŸ

Terraform - a provisioning tool

▶ cloud-agnostic
▶ open-source written in Golang
▶ cloud/services providers registry
▶ declarative programming

HashiCorp Configuration
Language (HCL)

▶ OpenTofu alternative

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵų/ŵŸ

https://opentofu.org/

Terraform - a quick start

▶ macOS
brew tap hashicorp/tap
brew install hashicorp/tap/terraform

▶ Linux
curl -fsSL

https://apt.releases.hashicorp.com/gpg
| sudo apt-key add -

↪
↪
sudo apt-add-repository ”deb

[arch=amd64]
https://apt.releases.hashicorp.com
$(lsb_release -cs) main”

↪
↪
↪
sudo apt-get update && sudo apt-get

install terraform↪

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŴ/ŵŸ

Providers

▶ provider - a plugin with a set of
resource and data types that
defines how changes to resources
of that type are applied to remote
APIs

▶ local utilities for tasks, like
generating random numbers for
unique resource names

▶ version constraints and semanting
versioning

provider ”google” {
project = var.project_name
region = var.region

}
terraform {
required_providers {
google = {

version = ”~> 4.8.0”
}
random = {

source = ”hashicorp/random”
version = ”3.1.2”

}
kubectl = {

source = ”gavinbunney/kubectl”
version = ”1.14.0”

}
}

}

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵŵ/ŵŸ

Resources

▶ Each resource has inputs and
outputs. Inputs are called
arguments, and outputs are called
attributes.

▶ attributes of resources can be
referenced in other resources

▶ there are computed attributes that
are only available after the
resource has been created (e.g.
cloud resource URLs or IDs)

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŶ/ŵŸ

Data sources

▶ represent a piece of read-only
information that is fetched from
the provider

▶ a way to query the provider’s APIs
for data and to make that data
available to the rest of Terraform
code.

▶ example use case - referencing
Ubuntu image 22.04 (with
updates)

Definition:

Referencing an attribute:

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵŷ/ŵŸ

Variables 1/2

▶ input
variable ”environment” {
type = string
description = ”Development or

production environment”↪
default = ”dev”
validation {
condition = contains([”dev”,

”prod”], var.environment)↪
error_message = ”Valid values

for var: test_variable are
(dev, prod).”

↪
↪

}
}

▶ output
output ”data_generator_lines_num” {
value =

module.data-generator.lines_number↪
description = ”Number of lines in

a generated file”↪
}

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŸ/ŵŸ

Variables 2/2

Passing input variables to a module:
▶ environment variables

TF_VAR_name
▶ ”*.tfvars”
▶

terraform apply -var-file env/dev/project.tfvars
▶ from command prompt
▶ default values

▶ local variables for modules

locals {
service_name = ”forum”
owner = ”Community Team”

}
▶ help avoiding repeating the same values or

expressions multiple times in a configuration

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŹ/ŵŸ

Implicit and explicit dependencies

▶ implicit
resource ”google_service_account” ”tbd-sa”

{↪
account_id = ”${var.project_name}-sa”

}

resource ”google_project_iam_member”
”tbd-sa-role-bindings” {↪

project = var.project_name
role = ”roles/storage.admin”
member =

”serviceAccount:${google_service_account.tbd-sa.email}”↪
}

▶ explicit
module ”k8s-spark-operator”

{↪
depends_on = [module.gke]
source =

”./modules/spark-on-k8s-operator”↪
}

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵź/ŵŸ

Managing state

Locally(default):
▶ terraform.tfstate file in a

JSON format
▶ error-prone
▶ not-secure

Shared storage
▶ requires defining a remote backend

like S3, GCS
▶ encryption at rest and in

transit(storing secrets)
▶ versioning
▶ isolation of environments using a

bucket and/or prefix
▶ team collaboration

terraform init
-backend-config=env/dev/backend.tfvars
-reconfigure

↪
↪

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŴŻ/ŵŸ

Modules

▶ any set of Terraform configuration
files in a folder is a module

▶ there is always at least a root
module

▶ code reusability
▶ can be stored locally or in a git

repo
▶ versioning
▶ small, composable and testable

Infrastructure as Code (IaC) in the Cloud Age (TBD) Ŵż/ŵŸ

Modules vs. stacks

▶ stacks are collections of modules that are
logically connected and defined in a single
.tf file or multiple .tf files inside the same
directory

▶ they represent a single deployment unit of
an infrastructure, e.g. environment or a
larger part of it, such as storage system

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵų/ŵŸ

Benefits of using stacks

▶ limit radius blast of resource changes
(separation of state files), i.e. human error
boundaries

▶ speed – managing all resources with a
single state file is slow

▶ different resource lifecycles – e.g. storage
vs. compute layer

▶ separate management responsibilities
across team boundaries

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵŴ/ŵŸ

Project layout - a simple case

▶ .terraform scratch dir
▶ env\/dev with environment-specific

variables
▶ modules local shared modules
▶ external git-hosted modules
▶ root module (stack) with main.tf
▶ state isolation per environment (limit

radius blast and performance)

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵŵ/ŵŸ

Loops
count
variable ”subnet_ids” {

type = list(string)
}
resource ”aws_instance” ”server” {

Create one instance for each subnet
count = length(var.subnet_ids)

ami = ”ami-a1b2c3d4”
instance_type = ”t2.micro”
subnet_id =

var.subnet_ids[count.index]↪

tags = {
Name = ”Server ${count.index}”

}
}

▶ a change in the middle of the list ?

for_each

resource ”google_project_iam_member”
”tbd-editor-supervisors” {↪

for_each = toset([
”user:marek.wiewiorka@gmail.com”,
”user:tgambin@gmail.com”

])
project =

google_project.tbd_project.project_id↪
role = ”roles/editor”
member = each.value

}

▶ set vs list updates

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵŶ/ŵŸ

Tricks with expressions

▶ functions
▶ templating
▶ conditional expressions with

ternary syntax (can be combined
with count for optional modules)

▶ types and values
▶ list comprehensions with for
▶ dynamic blocks (within a resource

or data type, e.g. configuration
key-values)

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵŷ/ŵŸ

Books

Infrastructure as Code (IaC) in the Cloud Age (TBD) ŵŸ/ŵŸ

