Distributed data processing with Apache Spark

Marek Wiewiórka, Tomasz Gambin

October 2024

- 1. Introduction to Apache Spark
 - core concepts
 - programming model
- 2. Integration with big data ecosystem
- 3. A closer look at Catalyst optimizer
- 4. Optimizations and tuning

Apache Spark

- unified programming model suitable for both data engineering(DE) and data science(DS)
- programming interfaces in Scala/Java(DE) and Python (DS), R also but less popular
- can run on clusters managed by YARN, Mesos and *Kubernetes* (GA starting from version 3.1.1 March 2021)
- ▶ support for JDK8 and JDK11 (Spark 3.x), Scala 2.12, Python 3.8 +

Hello world the Spark way in REPL 1/5


```
curl -s "https://get.sdkman.io" | bash
source "$HOME/.sdkman/bin/sdkman-init.sh"
export JAVA_VERSION=11.0.10.hs-adpt
export SPARK_VERSION=3.0.1
sdk install java ${JAVA_VERSION}
sdk use java ${JAVA_VERSION}
sdk install spark ${SPARK_VERSION}
sdk use spark ${SPARK_VERSION}
```

spark-shell --driver-memory 2g --master yarn

Spark context available as 'sc' (master = yarn, app ↔ id = yarn-1616362928683). Spark session available as 'spark'. Welcome to

```
/---7_-
- \/ - / - 7 --7 '-7
/__/ .../\_,/_/ /_/\_ version 3.0.1
```

Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, \hookrightarrow Java 11.0.10) Type in expressions to have them evaluated. Type :help for more information. scala>

Hello world the Spark way in REPL 2/5

SparkContext and SparkSession

- both serve as entrypoints for Spark app:
 - SparkSession SparkSQL (now the default one), for working with Dataframe/Dataset/SQL API
 - SparkContext Spark Core, for working with RDD collections (is a part of SparkSession)
 - store configuration and contain a lot of helper methods (i.e. for reading/ writing data, timing, etc.)
 - ▶ both automatically constructed in the Spark shell

Hello world the Spark way in REPL 3/5

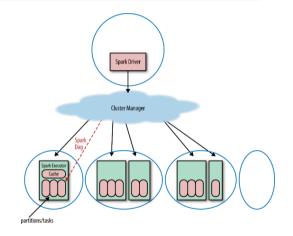
```
sc
.textFile("hdfs:///tmp/test.csv")
.flatMap(r => r.split('|') )
.map(r => s"Hello ${r} !")
.first
```

cat /tmp/test.csv Stalowa Wola|72000|Poland Sandomierz|32000|Poland

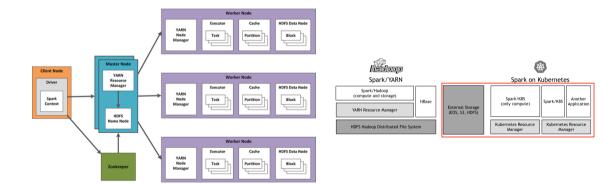
```
res18: String = Hello Stalowa Wola !
```

Hello world the Spark way in REPL 4/5

- SparkContext defines resources, specifies deployment mode (and Cluster Manager endpoint) = > Spark Driver is created.
- 2. Spark Driver negotiates resources with Cluster Manager and *Spark Executor(s)* are created on cluster worker nodes.
- 3. *Tasks/RDD partitions* are processed on Spark Executor(s).



Hello world the Spark way in REPL 5/5

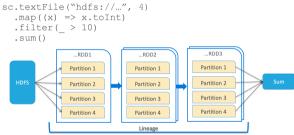


Distributed data processing with Apache Spark (TBD 2024Z)

7/30

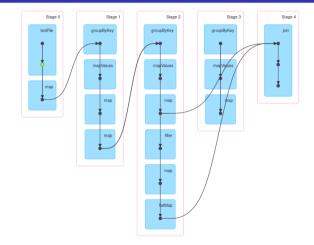
RDD - Resilient Distributed Dataset

RDD Lineage



- distributed (partitioned) collection stored on executors
- ► lazy evaluated
- ▶ immutable
- can be cached in memory(and/or disk) and be replicated
- ► fault-tolerant thanks to lineage

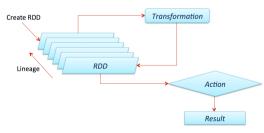
Directed acyclic graph (DAG) in Spark UI



Actions vs transformations

Transformations:

- ▶ functions that return another RDD
- ▶ can be narrow or wide
- ► lazy by nature



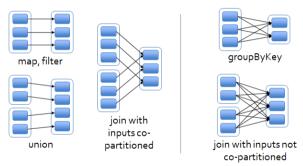
Actions:

- functions that return something that is not an RDD, including a side effect
- ► trigger RDD computation

Transformations	Actions				
map(func)	take(N)				
flatMap(func)	count()				
filter(func)	collect()				
groupByKey()	reduce(func)				
reduceByKey(func)	takeOrdered(N)				
mapValues(func)	top(N)				

Narrow vs wide tranformations

"Narrow" deps:



"Wide" (shuffle) deps:

Figure: Kinds of inter-partition dependencies [3]

Anatomy of Spark Application

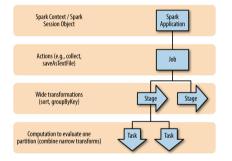


Figure: Spark Application [2]

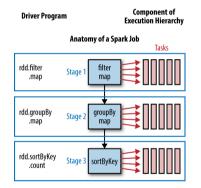


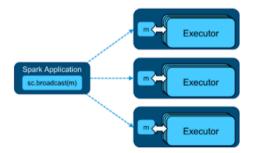
Figure: Spark Job [2]

Distributed data processing with Apache Spark (TBD 2024Z)

12/30

Shared variables – broadcast variables

- read-only variables cached on each node instead shipping a copy with all tasks
- efficiently distributed using Torrent-like protocol
- ▶ used for map-side operations



Shared variables – accumulators

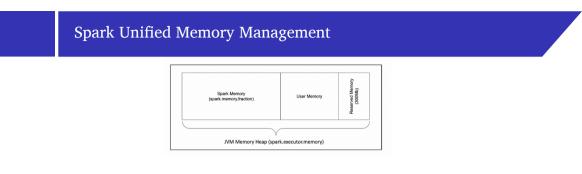
- write-only on executors, additive variables
- ▶ can be read on driver
- mainly for implementing various kinds of counters, sums
- by default numeric but can be customized by subclassing AccumulatorV2

Accum	ılat	ors								
Accumulable Value counter 46										
							45			
ľasks										
Index 🔺	ID	Attempt	Status	Locality Level	Executor ID / Host	Launch Time	Duration	GC Time	Accumulators	Errors
0	0	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms			
1	1	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 1	
2	2	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 2	
3	3	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 7	
4	4	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 5	
5	5	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 6	
6	6	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 7	
7	7	0	SUCCESS	PROCESS_LOCAL	driver / localhost	2016/04/21 10:10:41	17 ms		counter: 17	6

RDD persistence

- cache() vs persist()
- triggered by actions
- eviction using Least Recently Used (LRU) cache policy or manually using unpersist()
- ► cache responsibly

Level	Space used	CPU time	In memory	On disk	Comments
MEMORY_ONLY	High	Low	γ	Ν	
MEMORY_ONLY_SER	Low	High	Y	Ν	
MEMORY_AND_DISK	High	Medium	Some	Some	Spills to disk if there is too much data to fit in memory.
MEMORY_AND_DISK_SER	Low	High	Some	Some	Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory.
DISK_ONLY	Low	High	N	Y	



- when *execution* memory exceeds its compartment, it can borrow as much of the storage memory as is free
- when *storage* memory exceeds its compartment, it can borrow as much of the execution memory as is free
- when *execution* needs more memory and some of its memory was borrowed by the storage compartment, it can forcefully evict that memory occupied by storage (the other way round is *not* possible, must wait!).

SparkSQL and big data ecosystem

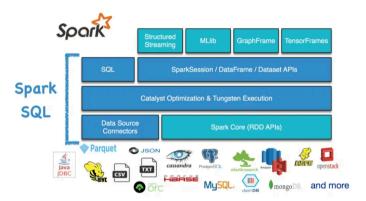


Figure: SparkSQL module [4]

Distributed data processing with Apache Spark (TBD 2024Z)

17/30

SparkSQL components

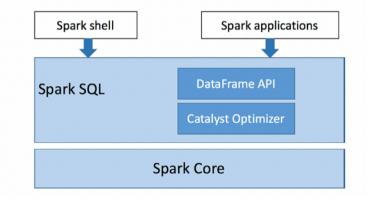


Figure: SparkSQL components[4]

SparkSQL - APIs at glance

Dataframe API:

```
spark
.read
.option("separator","|")
.option("header","true")
.csv("/tmp/test.csv")
.show
```

Dataset API

```
case class City(city: String,

→ population: String,

→ country:String)

spark.read

.option("header", "true")

.option("separator","|")

.csv("/tmp/test.csv")

.as[City]

.show
```

SQL:

```
sql("""CREATE TABLE test
USING com.databricks.spark.csv
OPTIONS (
path "/tmp/test.csv",
header "true",
separator "|")"""")
sql("SELECT * FROM test").show
```

Ì	city pop	oulation	country
Stalowa Sando	Wola	72000	Poland Poland

Rule vs cost optimization

- rule based optimizer (RBO) relies on application of predefined heuristics, e.g. : PredicatePushdown, ColumnPruning, PartitionPruning, ConstantFolding
- cost based optimizer (CBO) tries to estimate the cost of operators using datasets(tables, columns) statistics such as row counts, histograms to choose the best query execution plan
- Spark by default uses only RBO, but CBO can be also turned on by setting (spark.sql.cbo.enabled)
- CBO in Spark is used mainly for optimization of joins (e.g. joins reorder, star-schema transformation)

Catalyst optimizer - overview

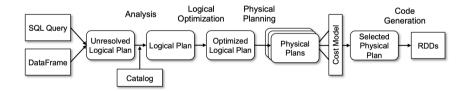


Figure: Phases of query planning in Spark SQL [1]

Catalyst optimizer - trees and rules

- The main data type in Catalyst is a *tree* composed of *node* objects. Each node has a node type and zero or more children
- Trees can be manipulated using *rules*, which are functions from a tree to another tree
- the most common approach is to use a set of pattern matching functions that find and replace subtrees with a specific structure

```
Catalyst optimizer constant-folding example 1/2
```

SELECT pos_start + (1+2) FROM reads

```
Constant-folding rule:
```

Z

```
tree.transform {
    case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)
```

```
case Add(left, Literal(0)) => left
```

```
case Add(Literal(0), right) => right
```

Catalyst optimizer constant-folding example 2/2

scala> val query= "SELECT pos_start + (1+2) FROM reads"
query: String = SELECT pos_start + (1+2) FROM reads

scala> sql(query).explain(true)
== Parsed Logical Plan ==
'Project [unresolvedalias(('pos_start + (1 + 2)), None)]
+- 'UnresolvedRelation [reads]

== Analyzed Logical Plan ==

(pos_start + (1 + 2)): int Project [(pos_start#534 + (1 + 2)) AS (pos_start + (1 + 2))#614]

+- SubqueryAlias spark_catalog.default.reads

+- Relation[sample_id#529,qname#530,flag#531,contig#532,pos#533,pos_stau_ _CB#548,tag_CC#549,tag_C6#550,tag_CM#551,tag_C0#552,... 42 more fields] oru

== Optimized Logical Plan ==

Project [(pos_start#534 + 3) AS (pos_start + (1 + 2))#614] +- Relation[sample_id#529,gname#538,flag#531,contig#532,pos#533,pos_start#!

#548,tag_CC#549,tag_CG#550,tag_CM#551,tag_CO#552,... 42 more fields] org.b:

== Physical Plan ==

*(1) Project [(pos_start#534 + 3) AS (pos_start + (1 + 2))#614]

+- *(1) Scan org.biodatageeks.sequila.datasources.BAM.BDGAlignmentRelation(

Figure: Query explain plan

Distributed data processing with Apache Spark (TBD 2024Z)

24/30

Catalyst optimizer - query processing phases in details

Analysis

- Looking up relations by name from the catalog, e.g. Hive Metastore
- resolving columns, aliases and data types

Physical planning

 cost-based optimization is only used to select some types of types of algorithms, e.g. for join operations

Logical optimization

 rule-based optimizations applied in batches

Code generation

 generating Java bytecode to run on each machine

Performance tuning

▶ minimize I\O operations:

 prefer data formats/ sources that efficiently support partition and *column* pruning and predicate pushdowns (e.g. columnar format like ORC/Parquet over JSON, CSV)

► join optimizations:

- prefer broadcast(map-side) joins (e.g. BroadcastHashJoin) over SortMergeJoin to avoid full data shuffle if feasible
- use efficient data structures adjusted to the problem, e.g. tree structures as broadcasts
- use Adaptive Query Execution (AQE) (enabled by default \geq 3.2.0)
 - coalescing post shuffle partitions
 - switching join strategies
 - optimizing skew joins

Apache Spark in the cloud

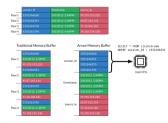
- managed Hadoop Ecosystem with Spark support: GCP Dataproc, AWS EMR, Azure HDInsight
- serverless: GCP Dataproc Batches, AWS Glue, Azure Synapse Analytics
- Kubernetes Spark Operator (GKE, EKS, AKS)
- ▶ The Databricks platform
- Snowpark (API compatible) in the Snowflake platform

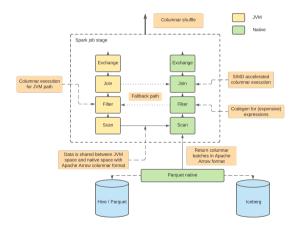
Apache Spark "on steroids" 1/2

- AWS Glue 3.0 (vectorised readers in C++, SIMD extensions)
- Databricks Photon (C++, vectorized)
- ▶ spark-rapids (GPUs)
- oap-project (SIMD, native, Apache Arrow)
- gluten to enable offloading to Clickhouse and Velox

Apache Spark "on steroids" – Datafusion Comet 2/2

- inspired by Databricks Photon
- native components implemented in Rust
- powered by Apache Datafusion
- uses in-memory columnar format Apache Arrow





Bibliography

Michael Armbrust et al. "Spark sql: Relational data processing in spark". In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. 2015, pp. 1383–1394.

Holden Karau and Rachel Warren. High performance Spark: best practices for scaling and optimizing Apache Spark. " O'Reilly Media, Inc.", 2017.

Javier Ramos. Apache Spark Internals: Tips and Optimizations. en. Dec. 2020. URL: https://itnext.io/apache-spark-internals-tips-and-optimizations-8c3cad527ea2 (visited on 03/21/2021).

Spark SQL - DataFrames & Datasets. URL: https://rharshad.com/spark-sql-dataframes-datasets/ (visited on 03/21/2021).

