
Distributeddataprocessing
withApacheSpark

Marek Wiewiórka, Tomasz Gambin
October 2024

Agenda

1. Introduction to Apache Spark
▶ core concepts
▶ programming model

2. Integration with big data ecosystem
3. A closer look at Catalyst optimizer
4. Optimizations and tuning

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵ/Ŷų

Apache Spark

▶ unified programming model suitable for both data engineering(DE) and data
science(DS)

▶ programming interfaces in Scala/Java(DE) and Python (DS), R also but less
popular

▶ can run on clusters managed by YARN, Mesos and Kubernetes (GA starting
from version 3.1.1 — March 2021)

▶ support for JDK8 and JDK11 (Spark 3.x), Scala 2.12, Python 3.8+

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵ/Ŷų

Hello world the Spark way in REPL 1/5

curl -s ”https://get.sdkman.io” | bash
source ”$HOME/.sdkman/bin/sdkman-init.sh”
export JAVA_VERSION=11.0.10.hs-adpt
export SPARK_VERSION=3.0.1
sdk install java ${JAVA_VERSION}
sdk use java ${JAVA_VERSION}
sdk install spark ${SPARK_VERSION}
sdk use spark ${SPARK_VERSION}

spark-shell --driver-memory 2g --master yarn

Spark context available as 'sc' (master = yarn, app
id = yarn-1616362928683).↪

Spark session available as 'spark'.
Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/

/___/ .__/_,_/_/ /_/_\ version 3.0.1
/_/

Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM,
Java 11.0.10)↪

Type in expressions to have them evaluated.
Type :help for more information.
scala>

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŷ/Ŷų

Hello world the Spark way in REPL 2/5

SparkContext and SparkSession
▶ both serve as entrypoints for Spark app:

▶ SparkSession – SparkSQL (now the default one), for working with
Dataframe/Dataset/SQL API

▶ SparkContext – Spark Core, for working with RDD collections (is a part of
SparkSession)

▶ store configuration and contain a lot of helper methods (i.e. for reading/
writing data, timing, etc.)

▶ both automatically constructed in the Spark shell

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŷ/Ŷų

Hello world the Spark way in REPL 3/5

sc
.textFile(”hdfs:///tmp/test.csv”)
.flatMap(r => r.split('|'))
.map(r => s”Hello ${r} !”)
.first

res18: String = Hello Stalowa Wola !

cat /tmp/test.csv
Stalowa Wola|72000|Poland
Sandomierz|32000|Poland

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ÿ/Ŷų

Hello world the Spark way in REPL 4/5

1. SparkContext defines resources,
specifies deployment mode (and
Cluster Manager endpoint) =>
Spark Driver is created.

2. Spark Driver negotiates resources
with Cluster Manager and Spark
Executor(s) are created on cluster
worker nodes.

3. Tasks/RDD partitions are processed
on Spark Executor(s).

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ź/Ŷų

Hello world the Spark way in REPL 5/5

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ź/Ŷų

RDD - Resilient Distributed Dataset

▶ distributed (partitioned) collection
stored on executors

▶ lazy evaluated
▶ immutable
▶ can be cached in memory(and/or
disk) and be replicated

▶ fault-tolerant thanks to lineage

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ż/Ŷų

Directed acyclic graph (DAG) in Spark UI

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ż/Ŷų

Actions vs transformations

Transformations:
▶ functions that return another RDD
▶ can be narrow or wide
▶ lazy by nature

Actions:
▶ functions that return something
that is not an RDD, including a
side effect

▶ trigger RDD computation

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵų/Ŷų

Narrow vs wide tranformations

Figure: Kinds of inter-partition dependencies [3]

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŴŴ/Ŷų

Anatomy of Spark Application

Figure: Spark Application [2] Figure: Spark Job [2]

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵŵ/Ŷų

Shared variables – broadcast variables

▶ read-only variables cached on
each node instead shipping a copy
with all tasks

▶ efficiently distributed using
Torrent-like protocol

▶ used for map-side operations

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŴŶ/Ŷų

Shared variables – accumulators

▶ write-only on executors, additive
variables

▶ can be read on driver
▶ mainly for implementing various
kinds of counters, sums

▶ by default numeric but can be
customized by subclassing
AccumulatorV2

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵŷ/Ŷų

RDD persistence

▶ cache() vs persist()
▶ triggered by actions
▶ eviction using Least Recently Used
(LRU) cache policy or manually
using unpersist()

▶ cache responsibly

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŴŸ/Ŷų

Spark Unified Memory Management

▶ when execution memory exceeds its compartment, it can borrow as much of
the storage memory as is free

▶ when storage memory exceeds its compartment, it can borrow as much of the
execution memory as is free

▶ when execution needs more memory and some of its memory was borrowed
by the storage compartment, it can forcefully evict that memory occupied by
storage (the other way round is not possible, must wait!).

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŴŹ/Ŷų

SparkSQL and big data ecosystem

Figure: SparkSQL module [4]

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵź/Ŷų

SparkSQL components

Figure: SparkSQL components[4]

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŴŻ/Ŷų

SparkSQL - APIs at glance

Dataframe API:
spark
.read
.option(”separator”,”|”)
.option(”header”,”true”)
.csv(”/tmp/test.csv”)
.show

SQL:
sql(”””CREATE TABLE test
USING com.databricks.spark.csv
OPTIONS (
path ”/tmp/test.csv”,
header ”true”,
separator ”|”)”””)
sql(”SELECT * FROM test”).show

Dataset API
case class City(city: String,

population: String,
country:String)

↪
↪
spark.read

.option(”header”, ”true”)

.option(”separator”,”|”)

.csv(”/tmp/test.csv”)

.as[City]

.show

+------------+----------+-------+
| city|population|country|
+------------+----------+-------+
|Stalowa Wola| 72000| Poland|
| Sandomierz| 32000| Poland|
+------------+----------+-------+

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŵż/Ŷų

Rule vs cost optimization

▶ rule based optimizer (RBO) relies on application of predefined heuristics, e.g. :
PredicatePushdown, ColumnPruning, PartitionPruning,
ConstantFolding

▶ cost based optimizer (CBO) tries to estimate the cost of operators using
datasets(tables, columns) statistics such as row counts, histograms to choose
the best query execution plan

▶ Spark by default uses only RBO, but CBO can be also turned on by setting
(spark.sql.cbo.enabled)

▶ CBO in Spark is used mainly for optimization of joins (e.g. joins reorder,
star-schema transformation)

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵų/Ŷų

Catalyst optimizer - overview

Figure: Phases of query planning in Spark SQL [1]

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŴ/Ŷų

Catalyst optimizer - trees and rules

▶ The main data type in Catalyst is a tree composed of node objects. Each node
has a node type and zero or more children

▶ Trees can be manipulated using rules, which are functions from a tree to
another tree

▶ the most common approach is to use a set of pattern matching functions that
find and replace subtrees with a specific structure

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŵ/Ŷų

Catalyst optimizer constant-folding example 1/2

SQL statement
SELECT pos_start + (1+2) FROM reads

Constant-folding rule:
tree.transform {

case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)

case Add(left, Literal(0)) => left

case Add(Literal(0), right) => right
}

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŶ/Ŷų

Catalyst optimizer constant-folding example 2/2

Figure: Query explain plan

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŷ/Ŷų

Catalyst optimizer - query processing phases in details

Analysis
▶ Looking up relations by name from
the catalog, e.g. Hive Metastore

▶ resolving columns, aliases and
data types

Physical planning
▶ cost-based optimization is only
used to select some types of types
of algorithms, e.g. for join
operations

Logical optimization
▶ rule-based optimizations applied
in batches

Code generation
▶ generating Java bytecode to run
on each machine

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŸ/Ŷų

Performance tuning

▶ minimize I\O operations:
▶ prefer data formats/ sources that efficiently support partition and column

pruning and predicate pushdowns (e.g. columnar format like ORC/Parquet over
JSON, CSV)

▶ join optimizations:
▶ prefer broadcast(map-side) joins (e.g. BroadcastHashJoin) over

SortMergeJoin to avoid full data shuffle if feasible
▶ use efficient data structures adjusted to the problem, e.g. tree structures as
broadcasts

▶ use Adaptive Query Execution (AQE) (enabled by default ≥ 3.2.0)
▶ coalescing post shuffle partitions
▶ switching join strategies
▶ optimizing skew joins

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŹ/Ŷų

Apache Spark in the cloud

▶ managed Hadoop Ecosystem with
Spark support: GCP Dataproc,
AWS EMR, Azure HDInsight

▶ serverless: GCP Dataproc Batches,
AWS Glue, Azure Synapse
Analytics

▶ Kubernetes Spark Operator (GKE,
EKS, AKS)

▶ The Databricks platform
▶ Snowpark (API compatible) in the
Snowflake platform

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵź/Ŷų

Apache Spark „on steroids“ 1/2

▶ AWS Glue 3.0 (vectorised readers in
C++, SIMD extensions)

▶ Databricks Photon (C++, vectorized)
▶ spark-rapids (GPUs)
▶ oap-project (SIMD, native, Apache
Arrow)

▶ gluten to enable offloading to
Clickhouse and Velox

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵŻ/Ŷų

https://nvidia.github.io/spark-rapids/
https://github.com/oap-project/gazelle_plugin
https://github.com/oap-project/gluten
https://github.com/facebookincubator/velox/

Apache Spark „on steroids“ – Datafusion Comet 2/2
▶ inspired by Databricks Photon
▶ native components implemented in
Rust

▶ powered by Apache Datafusion
▶ uses in-memory columnar format
Apache Arrow

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) ŵż/Ŷų

Bibliography

Michael Armbrust et al. “Spark sql: Relational data processing in spark”. In: Proceedings of the 2015 ACM SIGMOD international conference on
management of data. 2015, pp. 1383–1394.

Holden Karau and Rachel Warren. High performance Spark: best practices for scaling and optimizing Apache Spark. ” O’Reilly Media, Inc.”, 2017.

Javier Ramos. Apache Spark Internals: Tips and Optimizations. en. Dec. 2020. URL:
https://itnext.io/apache-spark-internals-tips-and-optimizations-8c3cad527ea2 (visited on 03/21/2021).

Spark SQL - DataFrames & Datasets. URL: https://rharshad.com/spark-sql-dataframes-datasets/ (visited on 03/21/2021).

Distributed data processing with Apache Spark (TBD ŵųŵŷZ) Ŷų/Ŷų

https://itnext.io/apache-spark-internals-tips-and-optimizations-8c3cad527ea2
https://rharshad.com/spark-sql-dataframes-datasets/

	References

