Distributed data processing
with Apache Spark

Marek Wiewiorka, Tomasz Gambin
October 2024

-

1. Introduction to Apache Spark
» core concepts
» programming model

2. Integration with big data ecosystem
3. A closer look at Catalyst optimizer
4. Optimizations and tuning

Distributed data processing with Apache Spark (TBD 20247) Vkle)

- Apache Spark

» unified programming model suitable for both data engineering(DE) and data
science(DS)

» programming interfaces in Scala/Java(DE) and Python (DS), R also but less
popular

» can run on clusters managed by YARN, Mesos and Kubernetes (GA starting
from version 3.1.1 — March 2021)

» support for JDK8 and JDK11 (Spark 3.x), Scala 2.12, Python 3.8 +

Distributed data processing with Apache Spark (TBD 20247) 2/30

Hello world the Spark way in REPL 1/5

spark-shell --driver-memory 2g --master yarn

Spark context available as 'sc' (master = yarn, app
< id = yarn-1616362928683).

Spark session available as 'spark'.

Welcome to

curl -s "https://get.sdkman.io” | bash

source "$HOME/.sdkman/bin/sdkman-init.sh” A -

export JAVA_VERSION=11.0.10.hs-adpt AV T sion .04

export SPARK_VERSION=3.0.1 AV

zgt 32??5;;SA&;{\JC\E/%\I/(E)E?ON} Using Scala version 2.12.10 (OpendDK 64-Bit Server VM,
—_ =g UL

sdk install spark ${SPARK_VERSION?} Typejaixaeiy:grgsg())ns to have them evaluated.

sdk use spark ${SPARK_VERSION} Type :help for more infornation.

Distributed data processing with Apache Spark (TBD 20247) 3/30

- Hello world the Spark way in REPL 2/5

SparkContext and SparkSession
» both serve as entrypoints for Spark app:

» SparkSession — SparkSQL (now the default one), for working with
Dataframe/Dataset/SQL API

» SparkContext — Spark Core, for working with RDD collections (is a part of
SparkSession)

» store configuration and contain a lot of helper methods (i.e. for reading/
writing data, timing, etc.)

» both automatically constructed in the Spark shell

Distributed data processing with Apache Spark (TBD 20242) 4/30

- Hello world the Spark way in REPL 3/5

sc

.textFile("hdfs:///tmp/test.csv"”)

flatMap(r => r.split('|')) cat /tmp/test.csv

.map(r => s"Hello $irt !") Stalowa Wola|72000|Poland
first Sandomierz|32000|Poland

resl8: String = Hello Stalowa Wola !

Distributed data processing with Apache Spark (TBD 20247) 5/30

- Hello world the Spark way in REPL 4/5

1. SparkContext defines resources,
specifies deployment mode (and
Cluster Manager endpoint) = >
Spark Driver is created.

2. Spark Driver negotiates resources
with Cluster Manager and Spark
Executor(s) are created on cluster
worker nodes.

3. Tasks/RDD partitions are processed
on Spark Executor(s).

Cluster Manager

o b

Distributed data processing with Apache Spark (TBD 20247) 6/30

partitions/tasks

Hello world the Spark way in REPL 5/5

Spark on Kubernetes

External Storage
(EOS, 53, HOFS)

Spark/Kes

Another
(only compute) Spark/K8s

Application

Kubernetes Resource
Manager

Kubernetes Resource
Manager

Distributed data processing with Apache Spark (TBD 20247)

Worker Node
Executor Cache HOFS Data Node
vaRN - P
Node Task parttion [1 [| miock |-
Manager [— — —
)
Client Node [hEGlEEm
v Workar Ho Spark/YARN
Executor Cache HOFS Data Node soorkiTadom
varn — — (compute and storage)
Spark Node Task parttion [1, || | miock [T Hease
Context Manager L= | =
| — YARN Resource Manager
| HDFS Hadoop Distributed File System
Worker Node
Executor Cache HOFS Data Node
arn y —
Node Task Partiion | | | sioc [}
Manager b . |

7/30

RDD - Resilient Distributed Dataset

RDD Lineage o . .
» distributed (partitioned) collection
sc.textFile (“hdfs://..”, 4)
.map ((x) => x.toInt) stored on executors
.filter(_ > 10)
.sum () » lazy evaluated
R » immutable
2{ Partition 1 Partition 1 Partition 1
"~ ponionz | partion2_| partton 2 » can be cached in memory(and/or
N{ Partition 3 Partition 3 Partition 3 dlSk) and be replicated
\{ Partition 4 \ Partition 4) Partition 4

» fault-tolerant thanks to lineage

| Lineage |

Distributed data processing with Apache Spark (TBD 20247) 8/30

Directed acyclic graph (DAG) in Spark Ul

Stage 0

Stages Storage textFie.

SPEAS 4o bs
Details for Stage 9 (Attempt 0)
Total Time Across All Tasks: 1 ms
Locality Level Summary: Process locat:

Input Size / Records: 50.08/1
Associated Job Ids: 9

~ DAG Visualization map
Stage s
textFie

fle//Ampest.csv 53]
textFil at <console>:25

fle//imphest.csv [54)
textFie at <console>:25

fatvap

MapParttionsDD [55]
flatMap at <console>:25

map

MapPartionsDD [56]
map at <console>25

Distributed data processing with Apac

Stage 1 Stage 2 Stage 3 Stage 4
groupByKey aroupByKey groupByKey oin
magValues

map

map

Spark (TBD 2024Z7)

Actions vs transformations

Actions:

Transformations:

» functions that return something
that is not an RDD, including a
side effect

» functions that return another RDD
» can be narrow or wide

> lazy by nature » trigger RDD computation

Create RDD ‘ > Transformation
AN
1 map(func) take(N)
flatMap(func count
Lineage\ RDD € p(} (]
\ T filter(func) collect()
> Action
i groupByKey() reduce(func)
v y reduceByKey(func) takeOrdered(N)
Result
mapValues(func) top(N)

Distributed data processing with Apache Spark (TBD 20247) 10/30

Narrow vs wide tranformations

"deps: “Wide" (shuffle) deps:

- ([EED

m|.4. o ¥
ol 1 1]

ap, filt

||_|flgf
[T1T]

: join with
v inputs co-
union partitioned join with inputs not

co-partitioned

Figure: Kinds of inter-partition dependencies [3]

Distributed data processing with Apache Spark (TBD 20247) 11/30

Anatomy of Spark Application

Spark Context / Spark
Session Object

Spark
Application

Actions (e.g., collect,
saveAsTextFile)

Wide transformations
(sort, groupByKey)

Computation to evaluate one
partition (combine narrow transforms)

Figure: Spark Application [2]

Distributed data processing with Apa

. Component of
Driver Program Execution Hierarchy
Anatomy of a Spark Job
Tasks
rdd filter Stage 1| flter
.map 9 map
I LI
|
L 2 N
rdd.groupBy groupBy
‘map Stage 2 map
T HNISIN
|
v IR
rdd.sortByKey
count Stage3 fsortBykey

Spark (TBD 2024Z7)

Figure: Spark Job [2]

- Shared variables — broadcast variables
» read-only variables cached on) «

each node instead shipping a copy

With all taSkS Spark Application |

» efficiently distributed using
Torrent-like protocol

» used for map-side operations

Distributed data processing with Apache Spark (TBD 20247)

Shared variables — accumulators

» write-only on executors, additive
variables

v

can be read on driver

» mainly for implementing various 1 o |uoooms |Procese Lo |averodbou | 20180421 101047 7
kinds Of counters Sums 3 30 'SUCCESS PROGESS_LOCAL driver / localhost 2016/04/21 10:10:41 17 ms. counter: 7

b 4 4 0 'SUCCESS PROCESS_LOCAL dri localhost 2016/04/21 10:10:41 17 ms counter: 5

> by default numeric but can be 5 60 SO PROGESSLOGAL dver ks 20160421 10101 17rs o

customized by subclassing
AccumulatorV2

Distributed data processing with Apache Spark (TBD 20247) 14/30

RDD persistence

Level Space used (PUtime Inmemory Ondisk Comments

» cache() vs persist() VAORLOW Wyl Y

> triggered by actions MEMORY_ONLY_SER ~ Low Hgh Y N

> eViCtion using Least Recently Used MEMORY_AND_DISK High Medium ~ Some Some ;pe'”r:;;,_d“k'“hm is too much data to fit in
(LRU) CaChe pOlicy or manually MEMORY_AND_DISK_SER Low High Some Some Spills to disk if there is too much data to fit in
using unpersist() e

DISK_ONLY Low High N Y

» cache responsibly

Distributed data processing with Apache Spark (TBD 20247) 15/30

Spark Unified Memory Management

(spark memory.fraction) User Memory

Reserved Memory
(300Mb)

~
Y

JVM Memory Heap (spark.executor.memory)

» when execution memory exceeds its compartment, it can borrow as much of
the storage memory as is free

» when storage memory exceeds its compartment, it can borrow as much of the
execution memory as is free

» when execution needs more memory and some of its memory was borrowed
by the storage compartment, it can forcefully evict that memory occupied by
storage (the other way round is not possible, must wait!).

Distributed data processing with Apache Spark (TBD 20247) 16/30

SparkSQL and big data ecosystem

SporK

Structured
m
SparkSession / DataFrame / Dataset APIs
Spark
Catalyst Optimization & Tungsten Execution
Data Source
e

quet @©uson @
= !l mssandm Posr ! ope ﬂsn(k
JDBC
HaAsSE WS .
SQL .monw

and more
Figure: SparkSQL module [4]

Distributed data processing with Apache Spark (TBD 20247) 17/30

- SparkSQL components

Spark shell Spark applications

¥

Spark SQL DataFrame API

Catalyst Optimizer

Spark Core

Figure: SparkSQL components[4]

Distributed data processing with Apache Spark (TBD 20247) 18/30

SparkSQL - APIs at glance

SQL:
Dataframe API: Q
sql("""CREATE TABLE test
spark USING com.databricks.spark.csv
.option("”separatoxr”,”|") path ”/tmp/test.csv”,
.option("header”, "true”) header "true”,
.csv(”/tmp/test.csv”) separator "|")""")
-show sql(”SELECT * FROM test”).show
Dataset API
case class City(city: String,
- population: String, R R R +
> country:String) | city|population|country]|
spark.read e PR oo +
-option("header”, "true") |Stalowa Wolal 72000| Poland|
-option(“separator”,”|") | Sandomierz| 32000| Poland|
.csv("/tmp/test.csv”) PR fomm e fmmmmmmn +
.as[City]
.show

Distributed data processing with Apache Spark (TBD 20247) 19/30

- Rule vs cost optimization

» rule based optimizer (RBO) relies on application of predefined heuristics, e.g. :
PredicatePushdown, ColumnPruning, PartitionPruning,
ConstantFolding

» cost based optimizer (CBO) tries to estimate the cost of operators using
datasets(tables, columns) statistics such as row counts, histograms to choose
the best query execution plan

» Spark by default uses only RBO, but CBO can be also turned on by setting
(spark.sqgl.cbo.enabled)

» CBO in Spark is used mainly for optimization of joins (e.g. joins reorder,
star-schema transformation)

Distributed data processing with Apache Spark (TBD 20247) 20/30

Catalyst optimizer - overview

events

<. read. jsonC" /10gs") [TSCANT] e Clogs hasnese) ¢
e - Togs next
stats = if(e.status == “ERR") {
everts. oin(users) e e
; “loc”, “status” ey = (u.oc, e.status
e Canationty JOIN sumkey) +o ¢.duration
count(key) += 1
errors = stats.uhere(AGG
stats.status == “ERR") }
DataFrame API Optimized Plan Specialized Code
edatabricks
Analysis Logical Physical Code
Optimization Planning Generation

SQL Query
imi Selected
Unresolved . Optimized Physical ’
\} Logical Plan Logical Plan Logical Plan P{ans Phg;':a' RDDs

DataFrame

Catalog

- Catalyst optimizer - trees and rules

» The main data type in Catalyst is a tree composed of node objects. Each node
has a node type and zero or more children

» Trees can be manipulated using rules, which are functions from a tree to
another tree

» the most common approach is to use a set of pattern matching functions that
find and replace subtrees with a specific structure

Distributed data processing with Apache Spark (TBD 20247) 22/30

- Catalyst optimizer constant-folding example 1/2

SELECT pos_start + (1+2) FROM reads

Constant-folding rule:

tree.transform $
case Add(Literal(cl), Literal(c2)) => Literal(cl+c2)

case Add(left, Litexal(0)) => left
case Add(Literal(0), right) => right
%

Distributed data processing with Apache Spark (TBD 20247) 23/30

t optimizer constant-folding example 2/

scala> val query= "SELECT pos_start + (1+2) FROM reads"
query: String = SELECT pos_start + (1+2) FROM reads

scala> sql(query).explain(true)

== Parsed Logical Plan ==

'Project [unresolvedalias(('pos_start + (1 + 2)), None)]
+- 'UnresolvedRelation [reads]

== Analyzed Logical Plan ==
|(Dos,star~t + (1 +2)): int
Project [(pos_start#534 + (1 + 2))|AS (pos_start + (1 + 2))#614]
+- SubqueryAlias spark_catalog.default.reads

+- Relation[sample_id#529, qname#530, flag#531, contig#532, pos#533, pos_stal
_CB#548, tag_CC#549, tag_C6#550, tag_CM#551, tag_CO#552, ... 42 more fields] or(

== Optimized Logical Plan ==

Project [(pos_start#534 + 3)|AS (pos_start + (1 + 2))#614]

+- Relation[sample_id#529,qname#530, flag#531, contig#532, pos#533, pos_start#!
#548, tag_CC#549, tag_C6#550, tag_CM#551, tag_CO#552, ... 42 more fields] org.b

== Physical Plan ==
*(1)m_woject [(pos_start#534 + 3)[AS (pos_start + (1 + 2))#614]
+- * can org.biodatageeks.sequila.datasources.BAM.BDGAlignmentRelation(

Figure: Query explain plan

Distributed data processing with Apache Spark (TBD 20247)

- Catalyst optimizer - query processing phases in details

Analysis
» Looking up relations by name from
the catalog, e.g. Hive Metastore Logical optimization
» resolving columns, aliases and » rule-based optimizations applied
data types in batches
Physical planning Code generation
» cost-based optimization is only » generating Java bytecode to run
used to select some types of types on each machine
of algorithms, e.g. for join
operations

Distributed data processing with Apache Spark (TBD 20247) 25/30

- Performance tuning

» minimize I\O operations:

» prefer data formats/ sources that efficiently support partition and column
pruning and predicate pushdowns (e.g. columnar format like ORC/Parquet over
JSON, CSV)
» join optimizations:
» prefer broadcast(map-side) joins (e.g. BroadcastHashJoin) over
SortMergeJoin to avoid full data shuffle if feasible
» use efficient data structures adjusted to the problem, e.g. tree structures as
broadcasts
» use Adaptive Query Execution (AQE) (enabled by default > 3.2.0)
» coalescing post shuffle partitions
» switching join strategies
» optimizing skew joins

Distributed data processing with Apache Spark (TBD 20247) 26/30

- Apache Spark in the cloud

» managed Hadoop Ecosystem with
Spark support: GCP Dataproc,
AWS EMR, Azure HDInsight

» serverless: GCP Dataproc Batches,
AWS Glue, Azure Synapse
Analytics

» Kubernetes Spark Operator (GKE,
EKS, AKS)

» The Databricks platform

» Snowpark (API compatible) in the < .
Snowflake platform o |

Distributed data processing with Apache Spark (TBD 20247) 27/30

Apache Spark ,,on steroids“ 1/2

» AWS Glue 3.0 (vectorised readers in
C++, SIMD extensions)

» Databricks Photon (C++, vectorized)
» spark-rapids (GPUs)

» oap-project (SIMD, native, Apache
Arrow)

» gluten to enable offloading to
Clickhouse and Velox

Distributed data processing with Apache Spark (TBD 20247)

Client: Submit SQL Query

® Parsing Spark Driver
o Catalyst: Analysis/Planning/Optimization JVM
® Scheduling
Execute Task Execute Task Execute Task Execute Task Spark Executors
% % % /% S Mixed
JVM/Native
) 0 0
o ! o |
A Delta Lake
ETL Time (seconds) ETL (Cost)
1,600 572
1,200 54
500 L7368 36
400 sis
o 500
CPU(12xBVCPU,61GE) GPU (12X 8VCPU, 3268, 1xT4) U (1258 vCPU, 616G8) GPU (12 BVCPU, 3268, 1xT4)

https://nvidia.github.io/spark-rapids/
https://github.com/oap-project/gazelle_plugin
https://github.com/oap-project/gluten
https://github.com/facebookincubator/velox/

Apache Spark ,,on steroids“ — Datafusion Comet 2/2

» inspired by Databricks Photon

» native components implemented in
Rust

» powered by Apache Datafusion :
» uses in-memory columnar format el »¢ _r
1 Fallback path
Apache Arrow ! L*.
f

Return columnar
batches in Apache
Arrow format

Columnar shuffle C] M
) e

Fommmmmmm e e A
Spark job stage

SIMD accelerated
columnar execution

_ Codegen for (expensive)
expressions

T

I

-
Commmefmm e

Data is shared between JVM
space and native space with — —
Apache Arrow columnar format

Yﬁ?iiiii?‘

Hive / Parquet

29/30

Distributed data processing with Apa Spark (TBD 2024Z7)

Bibliography

@ Michael Armbrust et al. “Spark sql: Relational data processing in spark”. In: Proceedings of the 2015 ACM SIGMOD international conference on
management of data. 2015, pp. 1383-1394.

@ Holden Karau and Rachel Warren. High performance Spark: best practices for scaling and optimizing Apache Spark. ” O’Reilly Media, Inc.”, 2017.

@ Javier Ramos. Apache Spark Internals: Tips and Optimizations. en. Dec. 2020. URL:
https://itnext.io/apache-spark-internals-tips-and-optimizations-8c3cad527ea?2 (visited on 03/21/2021).

@ Spark SQL - DataFrames & Datasets. URL: https://rharshad.com/spark-sql-dataframes-datasets/ (visited on 03/21/2021).

Distributed data processing with Apache Spark (TBD 20247) 30/30

https://itnext.io/apache-spark-internals-tips-and-optimizations-8c3cad527ea2
https://rharshad.com/spark-sql-dataframes-datasets/

	References

