
polars-bio: High-PerformancePython
DataFrameOperations forGenomics

Demystify AI & Data Management Series

Marek Wiewiórka

September 15, 2025



About me

▶ Assistant Professora at Warsaw University of Technology

▶ Chief Architect @Xebia Data Poland, 20+ years building
data-intensive systems

▶ distributed and data-intensive systems, artificial
intelligence and cloud computing for large scale genomic
studies.

▶ road and gravel bikes enthusiast

▶ https://marekwiewiorka.org/

aInstitute of Computer Science

polars-bio: High-Performance Python DataFrame Operations for Genomics 1/34

https://www.ii.pw.edu.pl/ii_en
https://marekwiewiorka.org/


Biodatageeks lab

▶ Warsaw University of Technology,

Faculty of Electronics and

Information Technology

▶ current research topics:
▶ AI for analyzing biomedical

literature
▶ Meta-calling for gene fusion

detection in RNA-Seq
▶ Optimizing RVAS
▶ Open genomic data lakehouse

▶ https://biodatageeks.org/

▶ https://github.com/biodatageeks/

polars-bio: High-Performance Python DataFrame Operations for Genomics 2/34

https://biodatageeks.org/
https://github.com/biodatageeks/


Agenda

1. Rationale and motivation

2. Context and alternatives for polars-bio
3. Deep dive into internals

4. Benchmarks

5. Future directions

polars-bio: High-Performance Python DataFrame Operations for Genomics 3/34



Introduction to polars-bio

▶ polars-bio is a novel Python DataFrame library for genomics

that is fast and memory-efficient, introduced in 2025, built on

top of Polars, Apache DataFusion and Apache Arrow.

▶ main focus areas:
▶ genomic interval operations
▶ scalable data processing and querying
▶ fast I/O for bioinformatics file formats
▶ cloud storage interoperability
▶ genomic data lakehouse readiness

polars-bio: High-Performance Python DataFrame Operations for Genomics 4/34

https://biodatageeks.org/polars-bio/
https://pola.rs/
https://datafusion.apache.org/
https://arrow.apache.org/


Rationale, History, and Challenges

▶ Growing bioinfo dataset sizes vs. increasing capacity of commodity

hardware

▶ Trade-off: scalability of distributed systems (e.g., Apache Spark - Hail,

Glow) vs. simplicity and performance of single-node libraries (e.g. DuckDB)

▶ Single-node solutions: constrained in both performance and scalability

▶ First attempt (2019–2023): SeQuiLa project on top of Apache Spark

▶ Conclusion: towards a hybrid approach

polars-bio: High-Performance Python DataFrame Operations for Genomics 5/34

https://biodatageeks.org/sequila/


Landscape of tools for genomic interval operations in Python

▶ several widely used libraries exist in this space:

▶ Pyranges and new Pyranges1
▶ Pybedtools
▶ Bioframe
▶ GenomicRanges

▶ employing an eager, in-memory execution model
with Pandas DataFrames/ NumPy arrays

▶ sweep-line (Bioframe, Pyranges1) or Nested
Containment List (Pyranges, GenomicRanges) or
genome binning algorithm (Pybetools)

▶ focus primarily on optimizing genomic operations
rather than end-to-end processing and IO
operations

polars-bio: High-Performance Python DataFrame Operations for Genomics 6/34

https://github.com/pyranges/pyranges_1.x
https://github.com/daler/pybedtools
https://github.com/open2c/bioframe
https://github.com/BiocPy/GenomicRanges


Market trends in data systems

▶ out-of-core (streaming) processing

▶ single node vectorized engines – e.g. DuckDB, Polars

▶ lazy evaluation and query optimization – e.g. Polars

▶ open data standards and interoperability,

such as Apache Arrow or Apache Iceberg

▶ composability and reusability, e.g. query parsers,

optimizers, query engines, memory and file/table formats

▶ data lakehouse architecture

polars-bio: High-Performance Python DataFrame Operations for Genomics 7/34



Composable Data Management Systems (CDMS) Manifesto

▶ Problem: Data systems are fragmented, duplicated, hard to maintain

▶ Vision: Break monoliths into modular, reusable components (frontends, Internal

Representation, optimizers, execution engines, runtime environments)

▶ Why Now: Already existing open standards (Arrow, Parquet, Iceberg) enable

composability

▶ Examples: Velox, Apache DataFusion

▶ Benefits: Faster innovation, reduced engineering effort, consistent user

experience

polars-bio: High-Performance Python DataFrame Operations for Genomics 8/34



Limitations of Current Approaches to Genomic Interval Processing

Remark

Genomic intervals processing is closer to BI/DWH/ETL-style workloads than to

numerical computing!

▶ Relying on libraries (e.g., NumPy) not designed for efficient bioinformatics

data handling

▶ Re-implementing algorithms and reinventing the wheel instead of leveraging

mature query engine: optimizers, operators and open data standards

▶ Parallelism and out-of-core not treated as a first-class concern (limited

scalability)

▶ Naive Python implementations (slow, limited scalability)

▶ Missing end-to-end optimization including reading, processing and writing data

polars-bio: High-Performance Python DataFrame Operations for Genomics 9/34



Why polars-bio is different?

▶ Composable and best of breed approach
▶ query engine (Apache DataFusion)
▶ DataFrame library (Polars)
▶ columnar memory format (Apache Arrow)
▶ data structure for interval intersection queries (COITrees and Superintervals)
▶ bioinformatics file formats (noodles)

▶ Builtin lazy, out-of-core and parallel computational model

▶ IO layer optimizations for analytical queries, such as projection and predicate

pushdowns

polars-bio: High-Performance Python DataFrame Operations for Genomics 10/34



polars-bio high-level architecture

polars-bio: High-Performance Python DataFrame Operations for Genomics 11/34



Architecture deep-dive - core components

polars-bio: High-Performance Python DataFrame Operations for Genomics 12/34



Architecture deep-dive - Polars and Apache DataFusion primer

▶ Polars and Apache DataFusion exhibit significant similarities, such as Apache

Arrow columnar memory model, lazy evaluation and out-of-core

computational model, great performance

▶ different main focuses:
▶ Polars – feature-rich end-user DataFrame library
▶ DataFusion – extremely extensible query engine

for building custom data systems

▶ do we really need both?
▶ Polars’ great data wrangling capabilities but hard to extend
▶ DataFusion’s codebase reusability (e.g. hybrid execution)

and more robust abstractions for query and IO optimizations
▶ additional integration complexity (e.g. pushdown optimizations, parallelism

control)

polars-bio: High-Performance Python DataFrame Operations for Genomics 13/34

https://github.com/pola-rs/polars
https://datafusion.apache.org/


Architecture deep-dive - Apache Arrow

▶ Standardized columnar

memory format – zero-copy

sharing

▶ Vectorized execution: SIMD

and CPU cache efficiency

▶ Cross-language

interoperability (e.g. Python

and Rust)

▶ Integration with open

standards – Parquet, Iceberg

▶ Foundation for modern data

systems – Polars, Ray,

Rapids, Apache Spark

Apache Arrow (Columnar, SIMD, Zero-Copy)

PolarsPandas 2.0 DuckDB

Apache SparkApache DataFusion Velox

polars-bio: High-Performance Python DataFrame Operations for Genomics 14/34



Architecture deep-dive - Polars vs. Pandas

▶ Execution model: Pandas is eager-only; Polars
supports eager and lazy.

▶ Optimization: Pandas has no query optimizer;
Polars (lazy) performs projection/predicate
pushdown, simplification, reordering.

▶ Parallelism: Pandas mostly single-threaded
(Python/GIL); Polars is multi-threaded (Rust).

▶ Memory/layout: Pandas uses NumPy blocks;
Polars is columnar and Arrow-friendly.

▶ Out-of-core/streaming: Pandas primarily
in-memory; Polars supports
streaming/out-of-core in lazy plans.

▶ String handling: Pandas often stores Python
objects (high memory overheads); Polars stores
UTF-8 natively with efficient kernels (SIMD).

DataFrame op_1: filter op_2: groupby Result

Eager (Pandas / Polars eager)

execute now materialize

DataFrame logical: filter logical: groupby collect() Result

Lazy (Polars lazy) optimizer: pushdown, simplify, reorder
optimized physical plan

Pandas (object dtype)

Array of object pointers

Python strPython strPython str

Arrow/Polars (UTF-8 + offsets)

Offsets: [0,4,...]

UTF-8 byte buffer: chr1chr2...

polars-bio: High-Performance Python DataFrame Operations for Genomics 15/34



Architecture deep-dive - Polars IO plugin

▶ arbitrary function that returns a

generator (Iterator) producing

pl.DataFrame batches and gets back

LazyFrame

▶ used for both files scanning and

interval operations results streaming

▶ zero-copy and streaming using

Arrow RecordBatchStream with

DataFusion PyDataFrame

▶ support for limit, projection and

predicate pushdowns (currently only

GFF)

polars-bio: High-Performance Python DataFrame Operations for Genomics 16/34



Architecture deep-dive - input file formats

▶ subproject datafusion-bio-formats

▶ exposed using custom TableProviders

▶ support for parralel reading of BGZF

inputs

▶ local and cloud storage (AWS S3,

GCS and Azure Blob

▶ cloud storage supported features

polars-bio: High-Performance Python DataFrame Operations for Genomics 17/34

https://github.com/biodatageeks/datafusion-bio-formats
https://datafusion.apache.org/library-user-guide/custom-table-providers.html
https://biodatageeks.org/polars-bio/features/#cloud-storage


Benchmarking dataset

▶ AILIst real dataset converted

into Parquet format – details

▶ GFF3 GENCODE release 49

Source: Jianglin Feng , Aakrosh Ratan , Nathan C Sheffield, Augmented Interval List:

a novel data structure for efficient genomic interval search, Bioinformatics 2019.

polars-bio: High-Performance Python DataFrame Operations for Genomics 18/34

https://biodatageeks.org/polars-bio/supplement/#real-dataset
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_49/gencode.v49.annotation.gff3.gz


File formats: GFF (scan_csv vs polars-bio) – results 1/2

▶ in full-scans Polars

and polars-bio

significantly

outperform Pandas

▶ Polars problem with

scan_csv and

compressed files)

▶ streaming

decompression

plugin

polars-bio: High-Performance Python DataFrame Operations for Genomics 19/34



File formats: GFF (scan_csv vs polars-bio) – results 2/2

▶ polars-bio achieves

near-linear scaling

up to 8 threads

▶ Polars and

streaming

decompression

plugin scale poorly

polars-bio: High-Performance Python DataFrame Operations for Genomics 20/34



Architecture deep-dive – genomic interval operations 1/2

▶ inspired by the Hash Join
implementation in DataFusion

▶ the entire (coordinates) build
side is read into the interval
search data structure

▶ batches from the probe side are
streamed through and checked
against the contents of the
search data structure

polars-bio: High-Performance Python DataFrame Operations for Genomics 21/34



Architecture deep-dive – genomic interval operations 2/2

▶ subproject sequila-native

▶ custom PhysicalPlanner and PhysicalOptimizerRule for detecting and rewriting

generic interval join operation (overlap or nearest)

▶ User-Defined Table Function (UDTF) for operations, such as coverage or count

overlaps

▶ several data structures available:
▶ COITrees
▶ IITree
▶ AVL-tree
▶ rust-lapper
▶ Superintervals

polars-bio: High-Performance Python DataFrame Operations for Genomics 22/34

https://github.com/biodatageeks/sequila-native
https://github.com/dcjones/coitrees
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/array_backed_interval_tree.rs
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/avl_interval_tree.rs
https://github.com/sstadick/rust-lapper
https://github.com/kcleal/superintervals/


Genomic interval operations – structures comparison results 1/6

▶ COITrees

(polars-bio default)

and Superintervals

fastest in all test

cases

▶ configurable in

runtime

▶ more tests using

different datasets

characteristics

needed

polars-bio: High-Performance Python DataFrame Operations for Genomics 23/34



Genomic interval operations – results 2/6

polars-bio: High-Performance Python DataFrame Operations for Genomics 24/34



Genomic interval operations – results 3/6

polars-bio: High-Performance Python DataFrame Operations for Genomics 25/34



Genomic interval operations – scaling – results 4/6

polars-bio: High-Performance Python DataFrame Operations for Genomics 26/34



Genomic interval operations – e2e pipeline – results 5/6

polars-bio: High-Performance Python DataFrame Operations for Genomics 27/34



Genomic interval operations – results 6/6

import pandas as pd
»> df = pd.read_parquet(”/tmp/exons/”)

# GenomicRanges - int32
GenomicRanges(number_of_ranges=438694, seqnames=[],
ranges=IRanges(

start=array([], shape=(438694,), dtype=int32),
width=array([], shape=(438694,), dtype=int32)),

# Bioframe - int32
cols=[”contig”,”pos_start”,”pos_end”]
»> bf.from_any(df, cols=cols).info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 438694 entries, 0 to 438693
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 contig 438694 non-null object
1 pos_start 438694 non-null int32
2 pos_end 438694 non-null int32
dtypes: int32(2), object(1)

# Pyranges0 - int64 !!!
»> df2pr0(df)
+--------------+-----------+-----------+
| Chromosome | Start | End |
| (category) | (int64) | (int64) |
|--------------+-----------+-----------|
| chr1 | 11873 | 12227 |
| chr1 | 12612 | 12721 |
| chr1 | 13220 | 14409 |
| chr1 | 14361 | 14829 |
| ... | ... | ... |
+--------------+-----------+-----------+
Unstranded PyRanges object has 438,694 rows and 3 columns.

# Pyranges1 - int32
»> df2pr1(df)
index | Chromosome Start End
int64 | object int32 int32
------- --- ------------ -------- --------
0 | chr1 11873 12227
1 | chr1 12612 12721
2 | chr1 13220 14409
3 | chr1 14361 14829
... | ... ... ...
PyRanges with 438694 rows, 3 columns, and 1 index columns.

polars-bio: High-Performance Python DataFrame Operations for Genomics 28/34



Overlap operation low memory mode for ∼ 109 wide rows

Capped (max rows per batch) streaming-friendly emission – ∼ 30 − 50% slower but

with significantly lower memory utilization.

polars-bio: High-Performance Python DataFrame Operations for Genomics 29/34



polars-bio roadmap

▶ Lakehouse support with open standards
▶ Apache Iceberg integration with open-source (e.g. Apache Grvaitino,

Lakekeeper, Apache Polaris, Unity Catalog OSS) and proprietary catalogs

▶ Feature parity across all supported bioinformatics formats

▶ Write-back into table formats (e.g. Apache Iceberg)

▶ Spec-driven agentic development for automated pipelines

▶ Hybrid execution: SeQuiLa + Apache Comet accelerator

▶ Your use case!

polars-bio: High-Performance Python DataFrame Operations for Genomics 30/34



Summary

▶ polars-bio: a new Python DataFrame library for genomics

▶ Combines Polars, Apache DataFusion, and Apache Arrow for speed and

scalability

▶ Efficient I/O for popular bioinformatics formats

▶ Addresses limitations of existing interval processing tools

▶ Towards a hybrid, lakehouse-ready approach for large-scale genomics

polars-bio: High-Performance Python DataFrame Operations for Genomics 31/34



Stay Tuned!

▶ GitHub: github.com/biodatageeks/polars-bio

▶ Project page: biodatageeks.org/polars-bio

▶ Discord: Join our community

▶ Meet us at ASHG 2025 Annual Meeting, Boston, October 14-18, 2025

polars-bio: High-Performance Python DataFrame Operations for Genomics 32/34

https://github.com/biodatageeks/polars-bio
https://biodatageeks.org/polars-bio/
https://discord.gg/bpxQ4Yxhk5


Thank You!

Questions

polars-bio: High-Performance Python DataFrame Operations for Genomics 33/34



Hands-on Demo

github.com/biodatageeks/polars-bio-workshop

polars-bio: High-Performance Python DataFrame Operations for Genomics 34/34

https://github.com/biodatageeks/polars-bio-workshop

