polars-bio: High-Performance Python
DataFrame Operations for Genomics

Demystify Al & Data Management Series

Marek Wiewidrka
September 15, 2025

About me

P Assistant Professor® at Warsaw University of Technology

» Chief Architect @Xebia Data Poland, 20+ years building
data-intensive systems

P distributed and data-intensive systems, artificial
intelligence and cloud computing for large scale genomic
studies.

» road and gravel bikes enthusiast

» https://marekwiewiorka.org/

9Institute of Computer Science

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://www.ii.pw.edu.pl/ii_en
https://marekwiewiorka.org/

Biodatageeks lab

» Warsaw University of Technology,
Faculty of Electronics and Meet the Team
Information Technology

Principal Investigators

» . current research topics:
» Al for analyzing biomedical a &
literature - —
» Meta-calling for gene fusion
detection in RNA-Seq Researchers

» Optimizing RVAS
» Open genomic data lakehouse Q g ‘% @A @
https://biodatageeks.org/

Anna Kosycarz \ga Ostrowska Wujc\ech Sitek Piotr Suszynsk\ Agmeszka Szmurio

v

» https://github.com/biodatageeks/

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/
https://github.com/biodatageeks/

Agenda

¥ Rationale and motivation
¥ Context and alternatives for polars-bio
<) Deep dive into internals

| Benchmarks

Gosw N e

. @ Future directions

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Introduction to polars-bio

» polars-bio is a novel Python DataFrame library for genomics

that is fast and memory-efficient, introduced in 2025, built on ()
top of Polars, Apache DataFusion and Apache Arrow.
» main focus areas: =
» ¥ genomic interval operations POLARS-BIO

» 4 scalable data processing and querying
» Y fast 1/0 for bioinformatics file formats
> cloud storage interoperability
» E# genomic data lakehouse readiness

[T

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/polars-bio/
https://pola.rs/
https://datafusion.apache.org/
https://arrow.apache.org/

- Rationale, History, and Challenges

» ./ Growing bioinfo dataset sizes vs. increasing capacity of commodity
hardware

»]! Trade-off: scalability of distributed systems (e.g., Apache Spark - Hail,
Glow) vs. simplicity and performance of single-node libraries (e.g. DuckDB)

» M Single-node solutions: constrained in both performance and scalability
» 4 First attempt (2019-2023): SeQuilLa project on top of Apache Spark
» [Conclusion: towards a hybrid approach SeQuilaDistributed analytcs for genornieat

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/sequila/

Landscape of tools for genomic interval operations in Python

» several widely used libraries exist in this space:

» Pyranges and new Pyrangesl
» Pybedtools

» Bioframe

» GenomicRanges

» employing an eager, in-memory execution model
with Pandas DataFrames/ NumPy arrays

» sweep-line (Bioframe, Pyrangesl) or Nested
Containment List (Pyranges, GenomicRanges) or
genome binning algorithm (Pybetools)

» focus primarily on optimizing genomic operations
rather than end-to-end processing and 10
operations

100

Star History

jrange:
© T puranges/puranges_Lx
@ daler/pypedtools

202 200 206 708 % 222 2024
Date % star-history.com

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/pyranges/pyranges_1.x
https://github.com/daler/pybedtools
https://github.com/open2c/bioframe
https://github.com/BiocPy/GenomicRanges

- Market trends in data systems

vvywvyy

v

v . . —
out-of-core (streaming) processing I|I!II| Il'!":ll-
il I I

iyl

single node vectorized engines — e.g. DuckDB, Polars " L

lazy evaluation and query optimization — e.g. Polars
open data standards and interoperability,

such as Apache Arrow or Apache Iceberg Q
composability and reusability, e.g. query parsers,
optimizers, query engines, memory and file/table formats DuckDB

data lakehouse architecture

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Composable Data Management Systems (CDMS) Manifesto

» Problem: Data systems are fragmented, duplicated, hard to maintain

» Vision: Break monoliths into modular, reusable components (frontends, Internal
Representation, optimizers, execution engines, runtime environments)

» Why Now: Already existing open standards (Arrow, Parquet, Iceberg) enable
composability

v

Examples: Velox, Apache DataFusion

» Benefits: Faster innovation, reduced engineering effort, consistent user
experience

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Limitations of Current Approaches to Genomic Interval Processing

Genomic intervals processing is closer to BI/DWH/ETL-style workloads than to
numerical computing!

» Relying on libraries (e.g., NumPy) not designed for efficient bioinformatics
data handling

» Re-implementing algorithms and reinventing the wheel instead of leveraging
mature query engine: optimizers, operators and open data standards

» Parallelism and out-of-core not treated as a first-class concern (limited
scalability)

» Naive Python implementations (slow, limited scalability)
» Missing end-to-end optimization including reading, processing and writing data

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Why polars-bio is different?

» Composable and best of breed approach
» query engine (Apache DataFusion) =
» DataFrame library (Polars) POLARS-BIO
» columnar memory format (Apache Arrow)
» data structure for interval intersection queries (COITrees and Superintervals)
» bioinformatics file formats (noodles)

» Builtin lazy, out-of-core and parallel computational model

» 10 layer optimizations for analytical queries, such as projection and predicate
pushdowns

polars-bio: High-Performance Python DataFrame Operations for Genomics

polars-bio high-level architecture

! Data sources Execution * Data sinks

Async streams.
seon e [0
77777 ¥ Flez | ———> l

le formats readers It — tati
e providers nternal data representation
Cloud storage Local storage
A

Storage systems |
I
I
I

Table 1 Query planner

Stream i
Arow extensions

— > | Recond

|
|
1
) : Balches :
| Optimizer |
w o ep— iogtn |1
I
|
|
|
1

I] Datairame 3
Zero-copy I
Dataframe 2| Zero-~ Teblo 2
Cloud storage Local storage Batch/Stream or temp Parquet Arrow Amaw
> > | Amow _riemp Farauet o | Amow | Baten/Stream | Record
Record Record User-defined [*| Batches
| RAM Batches Batches table functions

@ python
o " L
. pandas @ pyion €I AtAFuSION @ust o BTN g jipandos ([P

rmance Pyt DataFrame Operations for Gen

Architecture deep-dive - core components

Table providers

SQL pre-processing views

Results materialization

Input files < Range operations
P . (per format) . (optional) . ge op .
: Data stream : Data straam - Data stream -
Local disk Registeritable GFF
Read/Scan DataFrame Write/Sink

Pushdown optimizations

Pushdovin optimizations

-

AWS S3 Registeriiable
ite/Sink
- 1o e @ e —onm s
j -0 7‘ A A
Local disk i |
Registertable | |
o | e s w—
|
: | | 4 I
Registertable
9 | Scan | | I o cov
G-~ Greate view | | | =
— | Scan | 0 Plugin— DataFrame
| | LazyFrame
| | | |
FTT T ‘r____L____\ it N | | |
1 import polars bio as pb A | | |
l
| Phregister v [[N . ———— -

‘gs://sourcedall.chrgz’,

query="SELEGT hvom, stert, end. spit parttvep, 1.3 |
7S impact FROM gnomad_big WHERE

el 1)=0 ANE
¢, MODERATE

v
"

of_over=pb.overiap(|1df
“gromad_sv’,

11" Jocal
||"v_gnomad")

|
. cnt-pb.count_overiaps(
bed", A

polars-bio: High-Performance Python DataFrame Operations for Genomics

| |
! df oversink csvigs:/target/overiap.csv) !
I I

- Architecture deep-dive - Polars and Apache DataFusion primer

» Polars and Apache DataFusion exhibit significant similarities, such as Apache
Arrow columnar memory model, lazy evaluation and out-of-core
computational model, great performance

» different main focuses:) APACHE y
» Polars - feature-rich end-user DataFrame library ~ DATAFUSION
» DataFusion — extremely extensible query engine I|I'|IIIIIIII=
for building custom data systems Illnlllll Il ||I|-
» do we really need both? |=: II=|. 'I".

» Polars’ great data wrangling capabilities but hard to extend

» DataFusion’s codebase reusability (e.g. hybrid execution)
and more robust abstractions for query and IO optimizations

» additional integration complexity (e.g. pushdown optimizations, parallelism
control)

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/pola-rs/polars
https://datafusion.apache.org/

- Architecture deep-dive - Apache Arrow

» Standardized columnar Pandas 2.0 Polars DuckDB
memory format — zero-copy
sharing

» Vectorized execution: SIMD
and CPU cache efficiency

» Cross-language Apache Arrow (Columnar, SIMD, Zero-Copy)
interoperability (e.g. Python

and Rust)

» Integration with open
standards — Parquet, Iceberg

» Foundation for modern data
systems — Polars, Ray,
Rapids, Apache Spark

[Apache DataFusion] [Apache Spark] Velox

polars-bio: High-Performance Python DataFrame Operations for Genomics

Architecture deep-dive - Polars vs. Pandas

Eager (Pandas / Polars eager)

» Execution model: Pandas is eager-only; Polars ((pataFrame |—>‘op_1: flter }—>{ op.2: groupby |—> [Result]
supports eager and lazy. execte now materialize

» Optimization: Pandas has no query optimizer;
Polars (lazy) performs projection/predicate

pushdown, simplification, reordering. , - logical: filter |- logical: groupby }—> —

i . i - optimized physical plan
4 Para}lllehsm. Pandlas n}ostlyl S.mﬁle t(lilrzaded Laay (Potars azy) otimizes ushoun, simpliy. rorcer primized physical p
(Python/GIL); Polars is multi-threaded (Rust). Pandas (object dype)
» Memory/layout: Pandas uses NumPy blocks;
Polars is columnar and Arrow-friendly.
» Out-of-core/streaming: Pandas primarily

in-memory; Polars supports
streaming/out-of-core in lazy plans.

P String handling: Pandas often stores Python

objects (high memory overheads); Polars stores
UTF-8 natively with efficient kernels (SIMD).

Arrow/Polars (UTF-8 + offsets)

DataFrame Operations for Genomics

Architecture deep-dive - Polars 10 plugin

» arbitrary function that returns a

generator (Iterator) producing DataFusion DataFusion
TableProvider TableProvider
pl.DataFrame batches and gets back
LazyFrame oimsmims (] onmasens
Logical Plan
» used for both files scanning and ‘OTL
interval operations results streaming —— Polars
. . PyDataFrame 10 Plugin
» zero-copy and streaming using a ‘

Arrow RecordBatchStream with
DataFusion PyDataFrame

I T Limit pushdown

Projection pushdown

/ Expression A\ Predicate pushdown

» support for limit, projection and \ “rensistor /
predicate pushdowns (currently only e
GFF)

polars-bio: High-Performance Python DataFrame Operations for Genomics

Architecture deep-dive - input file formats

» subproject datafusion-bio-formats rens prjon
threaded pushdown pushdown pushdown
» exposed using custom TableProviders , . .
» support for parralel reading of BGZF
inputs x x x
» local and cloud storage (AWS S3, % %
GCS and Azure Blob * * *
GFF3

» cloud storage supported features

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/biodatageeks/datafusion-bio-formats
https://datafusion.apache.org/library-user-guide/custom-table-providers.html
https://biodatageeks.org/polars-bio/features/#cloud-storage

Benchmarking dataset

Dataset# Name Size(x1000) Description
0 chainRn4 2,351 Source
1 fBrain 199 Source
2 exons 439 Dataset used in the BEDTools tutorial.

» AlLIst real dataset converted] chanomsnat isw sowce

into Parquet format — details z chanverscz 760

» GFF3 GENCODE release 49 ’ cramentink SR s
6 chainMonDomS5Link 128,187 Source
7 ex-anno 1194 Dataset contains GenCode annotations with ~1.2

million lines, mixing all types of features

8 extna 9,945 Dataset contains ~10 million direct-RNA mappings.

Source: Jianglin Feng , Aakrosh Ratan , Nathan C Sheffield, Augmented Interval List:
a novel data structure for efficient genomic interval search, Bioinformatics 2019.

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/polars-bio/supplement/#real-dataset
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_49/gencode.v49.annotation.gff3.gz

File formats: GFF (scan_csv vs polars-bio) — results 1/2

Scan witn Fiter Operation

» in full-scans Polars
and polars-bio
significantly
outperform Pandas

» Polars problem with

»»»»» : scan_csv and

compressed files)

» streaming
decompression
plugin

polars-bio: High-Performance Python DataFrame Operations for Genomics

File formats: GFF (scan_csv vs polars-bio) — results 2/2

» polars-bio achieves
near-linear scaling
up to 8 threads

» Polars and
streaming
decompression

scale poorly

polars-bio: High-Performance Python DataFrame Operations for Genomics

Architecture deep-dive — genomic interval operations 1/2

» inspired by the Hash Join
implementation in DataFusion

Interval operation

» the entire (coordinates) build T
side is read into the interval ;
search data structure

Record Batches

» batches from the probe side are
streamed through and checked
against the contents of the
search data structure

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Architecture deep-dive — genomic interval operations 2/2

subproject sequila-native

v

» custom PhysicalPlanner and PhysicalOptimizerRule for detecting and rewriting
generic interval join operation (overlap or nearest)

» User-Defined Table Function (UDTF) for operations, such as coverage or count
overlaps
» several data structures available:
» COITrees
» IITree
» AVL-tree
» rust-lapper
» Superintervals

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/biodatageeks/sequila-native
https://github.com/dcjones/coitrees
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/array_backed_interval_tree.rs
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/avl_interval_tree.rs
https://github.com/sstadick/rust-lapper
https://github.com/kcleal/superintervals/

Genomic interval operations — structures comparison results 1/6

» COITrees
(polars-bio default) [
and Superintervals L
fastest in all test
cases

» configurable in
runtime i

» more tests using
different datasets
characteristics
needed

polars-bio: High-Performance Python DataFrame Operations for Genomics

Genomic interval operations — results 2/6

Genomics Library Performance Analysis
Grouped by Operation (8-7 dataset)

Wall Time Comparison

Speedup Comparison

Mean Wall Time (seconds)

polars-bio: High-Performance Python DataFrame Operations for Genomics

Genomic interval operations — results 3/6

Speedup Comparison Across All Operations

Performance Comparison Across All Operations Overlap - Speedup Comparison
(Lower is Better) 25 2250 - polars_bio
Overlap - Small Dotasets. Overlap - Medium Dotasets Overlap - Large Dotasets o - pyrangest
o o s

Mean Time (seconds)
g g

Mean Time (seconds)
g

7 7
Dataset Pairs

Dataset pairs. Dataset Pairs Dataset Pairs Nearest - Speedup Comparison
Neaes - ot Daasets: Neaest - edum Dotsets: Newres - org Dntasets
g i H
£ £e oy 4
f—— [P—— ——
Couns Overaps - Small tasts Couns Overaps - e Datasets Coun Overtape.-targe Onasets Count Overlaps - specdup Comparison
Eo Eoz

g

7 7
Dataset pairs

taFrame Operations for Ge

Speedup vs 1-thread baseline

IS

w

Genomic interval operations — scaling — results 4/6

Parallel Scaling Performance (8-7 dataset)
Speedup relative to 1-thread baseline

Overlap Nearest Count Overlaps
polars-bio
~#@- GenomicRanges s s
Ideal speedup
o o
£ <
E] 3
54 84
3 3
3 3
H H
4 14
%3 %3
2 2
a a
. 3 3
/ 32 32
/ 3 8
/ a a
/ & &
/ - 1 L4 y
12x 1 1 1 1
10x
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 H 6 7 8

Number of Threads

mance Pyt

Number of Threads

Number of Threads

DataFrame Operations for Ge

Mean Wall Time

E2E Overlap

Genomic interval operations — e2e pipeline — results 5/6

vs polars_bio_streaming

Peak Memory Usage

Time (seconds)

347.45

Libraries

s
o

37015

e
&
&

o“°°

polars-bio

Speedup (x)

0.93x

e polars-bio-streaming

T00%

m=m Pyrangesl

0.09%

Libraries

== Pyranges0

0.13x

s Bioframe

Memory (GB)

36.868

Genomic interval operations — results 6/6

import pandas as pd
»> df = pd.read_parquet(”/tmp/exons/")

GenomicRanges - int32
GenomicRanges (number_of_ranges=438694, seqnames=[],
ranges=IRanges (
start=array([], shape=(438694,), dtype=int32),
width=array([], shape=(438694,), dtype=int32)),

Bioframe - int32
cols=["contig","pos_start”,”pos_end"”]
»> bf.from_any(df, cols=cols).info()
<class [Jpandas.core.frame.DataFrame'>
RangeIndex: 438694 entries, 0 to 438693
Data columns (total 3 columns):

Column Non-Null Count Dtype

0 contig 438694 non-null object
1 pos_start 438694 non-null int32
2 pos_end 438694 non-null int32
dtypes: int32(2), object(1)

Pyranges@ - inté4 !!!

»> df2pro (df)

e T B ettt +
| Chromosome | Start | End

| (category) | (int64) | (inté64)
I B et

| chrl | 11873 | 12227

| chri | 12612 | 12721

| chrl | 13220 | 14409

| chrl | 14361 | 14829

[... [| I
e T B e +
Unstranded PyRanges object has 438,694 rows and 3 columns.

Pyrangesl - int32
»> df2pri(df)

index | Chromosome Start End

int64 | object int32 int32
0 | chrl 11873 12227
1 | chrl 12612 12721
2 | chrl 13220 14409
3 | chrl 14361 14829

PyRanges with 438694 rows, 3 columns, and 1 index columns.

DataFrame Operations for Gen

Overlap operation low memory mode for ~ 10° wide rows

Capped (max rows per batch) streaming-friendly emission — ~ 30 — 50% slower but
with significantly lower memory utilization.

) bio-worksh srcfoverlap_low_memory.py

polars-bio: High-Performance Python DataFrame Operations for Genomics

- polars-bio roadmap

» 3 Lakehouse support with open standards

» L@ Apache Iceberg integration with open-source (e.g. Apache Grvaitino,
Lakekeeper, Apache Polaris, Unity Catalog OSS) and proprietary catalogs

» [Feature parity across all supported bioinformatics formats
» . Write-back into table formats (e.g. Apache Iceberg)

» <+’ Hybrid execution: SeQuiLa + Apache Comet accelerator
> Your use case!

polars-bio: High-Performance Python DataFrame Operations for Genomics

-

» ¥ polars-bio: a new Python DataFrame library for genomics

» 4’ Combines Polars, Apache DataFusion, and Apache Arrow for speed and
scalability

» [Efficient 1/0 for popular bioinformatics formats
»]l Addresses limitations of existing interval processing tools
» “1 Towards a hybrid, lakehouse-ready approach for large-scale genomics

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Stay Tuned!

» &/ GitHub: github.com/biodatageeks/polars-bio

» &) Project page: biodatageeks.org/polars-bio

» (- Discord: Join our community

» 7 Meet us at ASHG 2025 Annual Meeting, Boston, October 14-18, 2025

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/biodatageeks/polars-bio
https://biodatageeks.org/polars-bio/
https://discord.gg/bpxQ4Yxhk5

Thank You!

Questions

polars-bio: High-Performance Python DataFrame Operations for Genomics 33/34

-

A PR AR

github.com/biodatageeks/polars-bio-workshop

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/biodatageeks/polars-bio-workshop

