
Genome analysis

SeQuiLa: an elastic, fast and scalable

SQL-oriented solution for processing

and querying genomic intervals

Marek Wiewiórka1,†, Anna Le�sniewska2,†, Agnieszka Szmurło1,

Kacper Stępie�n2, Mateusz Borowiak2, Michał Okoniewski3

and Tomasz Gambin 1,*

1Institute of Computer Science, Warsaw University of Technology, Warsaw 00-665, Poland, 2Department of

Computer Science, Poznan University of Technology, Pozna�n 60-965, Poland and 3Scientific IT Services, ETH

Zurich, Zürich 8092, Switzerland

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: John Hancock

Received on May 7, 2018; revised on July 23, 2018; editorial decision on November 11, 2018; accepted on November 13, 2018

Abstract

Summary: Efficient processing of large-scale genomic datasets has recently become possible due

to the application of ‘big data’ technologies in bioinformatics pipelines. We present SeQuiLa—a

distributed, ANSI SQL-compliant solution for speedy querying and processing of genomic intervals

that is available as an Apache Spark package. Proposed range join strategy is significantly (�22�)

faster than the default Apache Spark implementation and outperforms other state-of-the-art tools

for genomic intervals processing.

Availability and implementation: The project is available at http://biodatageeks.org/sequila/.

Contact: tgambin@ii.pw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Analyses requiring intersection of genomic intervals as defined in Layer

(2013) are supported by several reported software tools, including

featureCounts (Liao, 2014), samtools (Li, 2009) and GenomicRanges

(Lawrence, 2013). Despite their popularity and ease-of-use, they suffer

from similar performance limitations, thereby making genome-wide

analyses infeasible. On the other hand, recently, there has been an out-

burst of scalable solutions for genomics, including sparkhit (Huang,

2018), ADAM (Massie et al., 2013) and the latest GATK version lever-

aging Apache Spark execution engine. Moreover, adapting relational al-

gebra principles in a form of a declarative Structured Query Language

(SQL) interface for querying genomic datasets is a novel approach

(Kozanitis, 2014; Masseroli, 2015). A proof-of-concept solution that

combines big data techniques and SQL interface for handling large-scale

interval queries was proposed in GenAp (Kozanitis and Patterson, 2016).

This approach, however, requires modifications in the Apache Spark

source code, making this tool hard to maintain and extend; it also dis-

cards low-level optimizations resulting in a suboptimal performance.

Furthermore, as a consequence of introducing the new keywords, it is ef-

fectively non-compliant with ANSI SQL standards, what may cause inte-

gration difficulties. To address the aforementioned issues, we have

developed a SeQuiLa Apache Spark package which is a distributed,

SQL-compliant solution, implementing fast range join computations be-

tween two tables, representing genomic intervals.

2 Materials and methods

2.1 Algorithm and implementation
Consider datasets s1 and s2, storing genomic intervals such as

js1j < js2j. The main idea of the algorithm is to transform s1 into a

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2156

Bioinformatics, 35(12), 2019, 2156–2158

doi: 10.1093/bioinformatics/bty940

Advance Access Publication Date: 14 November 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by U
niversite d'Evry Val d'Essonne user on 11 N

ovem
ber 2024

http://orcid.org/0000-0002-0941-4571
http://biodatageeks.org/sequila/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty940#supplementary-data
Deleted Text: M
https://academic.oup.com/

broadcastable structure of an interval forest [a hash map of interval

trees (Cormen et al., 2009), each representing one chromosome].

The intervals from s2 can be efficiently intersected with the interval

forest (Fig. 1A–C).

SeQuiLa package introduces a rule-based optimizer that chooses

the most efficient join strategy based on input data statistics com-

puted in runtime. First, the dataset with smaller row count (s1) is

designated for constructing an interval forest. Then it estimates the

size of dataset s1’ defined as projection of s1 on the set of columns

referenced by SQL query (Fig. 1B). If it fits into dedicated Spark

Driver’s memory (controlled by maxBroadcastSize parameter) the

interval forest is augmented with all columns from s1’

(SeQuiLa_it_all strategy) completing map-side join procedure in

one stage. Otherwise an interval tree is used as an index for add-

itional lookup step before the equi-shuffle-join operation between s1

and s2 (SeQuiLa_it_int strategy).

SeQuiLa has been developed in Scala using the Apache Spark 2.2

environment. In runtime it extends SparkSQL Catalyst optimizer

with custom execution strategies. It implements distributed map joins

using interval forest for inner range join operations. Useful genomic

transformations have been added as User Defined Functions/

Aggregates and exposed to the SQL interface. Furthermore, SeQuiLa

data sources for both BAM and ADAM file formats have been imple-

mented. It can also be integrated with third-party tools using

SparkSQL JDBC driver and with R using sparklyr package. SeQuiLa

is also available as a Docker container, and can be run locally or on a

Hadoop cluster using Yet Another Resource Negotiator (see

Supplementary Material for implementation details).

2.2 Performance evaluation
Testing infrastructure consisted of a six-node Hadoop cluster

(Cloudera Hadoop distribution version 5.12 with Apache Spark

upgraded to version 2.2.1), including four data nodes, a master

node and an edge node with 24 CPUs and 64 GB RAM each. To

prove the vertical and horizontal scalability of our solution and to

compare its performance against existing tools, two tests scenarios

have been executed, i.e. on a single node (edge node) and on a clus-

ter, using a whole-exome and whole-genome alignment datasets

from NA12878 sample, respectively. In each test, the number of

sequencing reads overlapping each one of the pre-defined genomic

regions (i.e. either list of exons or genes specified in BED files) has

been computed. This type of data processing is widely used in both

DNA and RNA sequencing pipelines (see use case examples in

Supplementary Material). We have used featureCounts software as

a baseline for performance and accuracy comparisons. Finally, we

have converted original BAM files into columnar storage format

(ADAM) and performed tests on both file formats to observe its

impact on the performance (see Supplementary Material for

details).

3 Results

SeQuiLa outperforms featureCounts, GenAp and default Spark

join implementation in terms of speed on a single node (1.7–

22.1�) and a cluster (3.2–4.7�) (Fig. 1D–F). SeQuiLa_it_all strat-

egy has proven to perform best in most of the scenarios (no net-

work shuffling required), whereas SeQuiLa_it_int performs

comparable to, or better than, GenAp. All algorithms favor colum-

nar to row oriented file format due to column pruning and disk re-

duction of I/O operations.

4 Conclusions

When run in parallel mode, SeQuiLa is the fastest tool in our bench-

mark, achieving significant performance gain in genomic interval

queries. Further, SeQuiLa has a potential to unlock the doors to

build additional scalable genomic data warehouse solutions, as well

as to implement other higher-level applications for various types of

bioinformatics analyses.

Funding

This work was supported by the National Science Center grants

[OPUS 2014/13/B/NZ2/01248, PRELUDIUM 2014/13/N/ST6/

01843, SONATA 2015/17/D/ST6/04063]; and by the Polish budget

funds for science in years 2016–2019 [Iuventus Plus grant

IP2015019874].

Conflict of Interest: none declared.

A

D E F

B C

Fig. 1. Example of datasets’ structure (s1, s2), including required columns, i.e. chr, start, end (A) and a sample SQL query (B). Broadcasting interval forest to

worker nodes (C). Performance comparison of featureCounts (state-of-the-art single node solution) against GenAp (the only available distributed solution)

and SeQuiLa on single node (D), and on a cluster (E). Speedup characteristics of SeQuiLa and default join implementation in Spark with featureCounts as a

baseline (F)

SeQuiLa 2157

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by U
niversite d'Evry Val d'Essonne user on 11 N

ovem
ber 2024

Deleted Text: (
Deleted Text:)
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty940#supplementary-data
Deleted Text: 6
Deleted Text: 4
Deleted Text: ,
Deleted Text:
Deleted Text: ve
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty940#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty940#supplementary-data
Deleted Text: ,
Deleted Text: -
Deleted Text: x
Deleted Text: -
Deleted Text: x
Deleted Text: u

References

Cormen,T. H. et al. (2009) Data structures. In: Introduction to Algorithms.

MIT Press, Cambridge, Massachusetts, pp. 348–354.

Huang,L. et al. (2018) Analyzing large scale genomic data on the cloud with

Sparkhit. Bioinformatics, 34, 1457–1465.

Kozanitis,C. and Patterson,D.A. (2016) GenAp: a distributed SQL interface

for genomic data. BMC Bioinformatics, 17, 63.

Kozanitis,C. et al. (2014) Using Genome Query Language to uncover genetic

variation. Bioinformatics, 30, 1–8.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS Comput. Biol., 9, e1003118.

Layer,R.M. et al. (2013) Binary Interval Search: a scalable algorithm for

counting interval intersections. Bioinformatics, 29, 1–7.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Liao,Y. et al. (2014) featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Masseroli,M. et al. (2015) GenoMetric Query Language: a novel approach to

large-scale genomic data management. Bioinformatics, 31, 1881–1888.

Massie,M. et al. (2013) Adam: genomics formats and processing patterns for

cloud scale computing. Technical Report, No. UCB/EECS-2013-207.

University of California, Berkeley.

2158 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by U
niversite d'Evry Val d'Essonne user on 11 N

ovem
ber 2024

