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Abstract

Motivation: Pileup analysis is a building block of many bioinformatics pipelines, including variant calling and geno-
typing. This step tends to become a bottleneck of the entire assay since the straightforward pileup implementations
involve processing of all base calls from all alignments sequentially. On the other hand, a distributed version of the
algorithm faces the intrinsic challenge of splitting reads-oriented file formats into self-contained partitions to avoid
costly data exchange between computational nodes.

Results: Here, we present a scalable, distributed and efficient implementation of a pileup algorithm that is suitable
for deploying in cloud computing environments. In particular, we implemented: (i) our custom data-partitioning al-
gorithm optimized to work with the alignment reads, (ii) a novel and unique approach to process alignment events
from sequencing reads using the MD tags, (iii) the source code micro-optimizations for recurrent operations, and (iv)
a modular structure of the algorithm. We have proven that our novel approach consistently and significantly outper-
forms other state-of-the-art distributed tools in terms of execution time (up to 6.5� faster) and memory usage (up to
2� less), resulting in a substantial cloud cost reduction. SeQuiLa is a cloud-native solution that can be easily
deployed using any managed Kubernetes and Hadoop services available in public clouds, like Microsoft Azure
Cloud, Google Cloud Platform, or Amazon Web Services. Together with the already implemented distributed range
join and coverage calculations, our package provides end-users with a unified SQL interface for convenient analyses
of population-scale genomic data in an interactive way.

Availability and implementation: https://biodatageeks.github.io/sequila/

Contact: tomasz.gambin@pw.edu.pl

1 Introduction

1.1 State-of-the-art
The sorted collection of the aligned sequencing reads can be trans-
formed into a set of pileup records, also known as a coverage pos-
ition summary. This format summarizes information about the base
calls in all genomic positions from the reads aligned to a reference
sequence, including total depth of coverage, non-reference (alterna-
tive) bases, and base qualities (see detailed definition in http://www.
htslib.org/doc/samtools-mpileup.html). Pileup format was designed
to provide the evidence of the single-nucleotide variants or the short
insertions/deletions at given genomic positions. It is commonly used
as an entry point to the well-established variant calling pipelines (Li,
2011) as well as to novel approaches to variant detection frame-
works based on the neural networks (Luo et al., 2020) or other
methods, e.g. the binomial model, partial-order alignment, and de

Bruijn graph local assembly (Liu et al., 2021) in fast variant calling.
Coverage position summary is also used for identification of somatic
mutations and copy number variation (Koboldt et al., 2012).

Samtools suite (Li et al., 2009) includes the mpileup tool, a gold
standard for both data format and correctness of pileup calculations;
however, it is a single-threaded program that does not provide the
scalability feature (Sater et al., 2020).

Research developments in the bioinformatics field emphasize a
common need to use a technology that allows distributing long-
lasting big data tasks into the multiple computing nodes or in the
cloud computing infrastructure (Yuan and Wildish, 2020). In the re-
cent Genome Analysis Toolkit (GATK, McKenna et al., 2010) ver-
sion, several programs (including pileup calculations) have been
implemented in a distributed manner ready to be run on the Apache
Spark cluster (Zaharia et al., 2010). Other research studies confirm
that big data programming paradigms can be successfully applied to
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many genomic analyses (Capuccini et al., 2020; Guo et al., 2018;
Wiewiórka et al., 2017, 2018) including variant calling (Ahmad
et al., 2021). The analysis of the ever-increasing genomic datasets
involves significant financial investments and administrative efforts
to maintain secure and fault-tolerant storage solutions as well as fast
and scalable processing units. To minimize those efforts, medical
clinics and research centers consider migrating bioinformatics pipe-
lines and custom analyses to private or public cloud infrastructure.
The evolution towards cloud architecture is embraced by the widely
used bioinformatics products both open-source (e.g. GATK) and
commercial (e.g. DNA Nexus, Terra) (Koppad et al., 2021).

Although significant progress has been made, there are still areas
in bioinformatics analyses that are not easily transferable to the dis-
tributed and cloud environments with traditionally used sets of
tools.

1.2 Contribution
In the previous works, we proved that it was possible to implement
very efficient and highly scalable tools, facilitating time-consuming
common bioinformatics operations: interval joins [SeQuiLa-int al-
gorithm (Wiewiórka et al., 2018), available in SeQuiLa package
since version 0.3.0] and coverage calculations [SeQuiLa-cov algo-
rithm (Wiewiórka et al., 2019), available in the SeQuiLa package
since version 0.4.0]. In the next essential release of SeQuiLa (0.6.11)
in 2021, we updated the code base to run on Apache Spark 3.1.2.
We have also fixed the reported issues and improved the existing
features; however, no major new functionalities have been intro-
duced since version 0.4.0 (see detailed release history on https://
github.com/biodatageeks/sequila/tags).

In the described current version (1.0.0), we have significantly
extended the previously implemented functionality of the SeQuiLa
package by introducing a novel distributed algorithm for summariz-
ing reads using the Compact Idiosyncratic Gapped Alignment
Report (CIGAR) strings and MD tags in a pileup format (SeQuiLa-
pileup, Algorithm 2) (see Table 1). We also propose a custom data
partitioning mechanism optimized to work with the alignment reads
(Algorithm 1) as it significantly influences the performance of all
subsequent steps by eliminating the need for data-exchange among
partitions. At the same time, it enables single-pass over input data
and lowers memory requirements since no intermediate data caching
is required.

We have developed the algorithm in a modular way, enabling
additional reduction of the execution time in two specific scenarios
(when compared to regular SeQuiLa-pileup method), i.e. (i) pileup
summary without information on base-qualities (denoted as
SeQuiLa-pileup-cov-only) and (ii) depth of coverage information
only (denoted as SeQuiLa-pileup-cov-only). Since the functionality
of SeQuiLa-pileup-cov-only is the same as the one provided by the
previously published SeQuiLa-cov tool (Wiewiórka et al., 2019) and
the performance of the new algorithm (SeQuiLa-pileup-cov-only) is
superior (see Section 3), we now recommend usage of SeQuiLa-
pileup-cov-only for coverage calculations instead of SeQuiLa-cov
while working with the current version of the SeQuiLa package
(1.0.0).

Besides the custom partitioner and pileup algorithm, the new
version of the SeQuiLa package provides Terraform modules,
Docker images, and code examples that facilitate straightforward
deployment in the public clouds infrastructure.

2 Materials and methods

2.1 Rationale
The foundations for the distributed pileup algorithm are based on
three key observations.

Firstly, the majority of bases in the aligned sequencing reads are
concordant with the reference sequence. Therefore, we designed our
algorithm to use both CIGAR strings, representing spliced alignment
operations and MD tags, encoding mismatched and deleted refer-
ence bases, as defined in https://samtools.github.io/hts-specs/
SAMv1.pdf and https://samtools.github.io/hts-specs/SAMtags.pdf
accordingly. The use of the above mentioned strings in conjunction
allows to handle deletions, insertions, and substitutions without
decoding and parsing the entire read sequence and base qualities. To
the best of our knowledge, it is the only algorithm that takes advan-
tage of this information for pileup construction.

Secondly, our pileup computation is divided into four units of
work: (i) coverage computation, (ii) identification of non-reference
base calls, (iii) collection of base qualities and (iv) output projection.
This decomposition allows us to reduce computational complexity
by skipping certain steps that are not required.

Finally, the most limiting factor of performance and scalability
for any distributed processing is the data exchange among the work-
er nodes that always requires costly data serialization as well as net-
work transfer. Therefore, we propose a new data partitions
coalescing mechanism, which guarantees proper handling of reads
overlapping more than one partition without the need of data shuf-
fling. In addition, we use BAM indexes for efficient partition boun-
daries adjustment and thus significantly reducing input/output (IO)
operations.

2.2 Algorithm
2.2.1 Defining partitions

Consider an input sorted collection of the aligned sequencing reads
R divided into n partitions by the underlying file system (Fig. 1A).
The set of all partitions constitutes an immutable collection of data,
i.e. resilient distributed dataset (RDD) which is the main logical unit
of data in the Apache Spark framework.

For each partition, we calculate two values: lower and upper
bounds that create self-contained virtual read partitions
(V1 ¼ lb1� ub1; V2 ¼ lb2� ub2, etc, from Fig. 1C, Algorithm 1).
For clarity, in pseudo-code we assume that all reads are aligned to a
single chromosome.

This information is further required for changing the default
Apache Spark partitioning schema (P1, P2, . . ., PN—see Fig. 1A),
creating new coalesced partitions (C1, C2, . . ., CN—see Fig. 1D).
Within each coalesced partition, the algorithm processes only the
reads overlapping with the corresponding virtual partition (see

Table 1. SeQuiLa package release history

Version (year) Publication Interval joins Coverage Pileup Other features

0.3.0 (2018) Wiewiórka et al. (2018) int — — —

0.4.0 (2019) Wiewiórka et al. (2019) int cov — —

0.6.11b (2021) — int cov —

1.0.0 (2022) — int pileup-cov-onlya pileupa reads-aware partitio-

ninga, cloud

recipesa

Note: int, interval joins (SeQuiLa-int); cov, coverage calculations (SeQuiLa-cov); pileup-cov-only, coverage calculations using simplified pileup algorithm

(SeQuiLa-pileup-cov-only); pileup, pileup calculations (SeQuiLa-pileup).
aNovel tools and features described in this manuscript.
bTechnical update (Apache Spark update and fixed reported issues).
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Fig. 1E). Note that our approach is very lightweight—it dynamically
calculates boundaries for virtual partitions, which can be considered
as view upon original Spark partitions. Unlike GATK which divides
input data into fixed length multikilobase-size pieces called shards,
we do not introduce any other level of data splitting and push all
computations down to the partition level.

2.2.2 Calculating coverage and alternative alleles

For each virtual partition, the program generates an aggregate object
holding: (i) an array of alignment events (i.e. start and end of align-
ment) which is gathered for the event-based coverage calculations,
(ii) a map of alternative bases count calculated using read MD tag
and (iii) an interval tree structure of succinct read representation—
ReadSummary (i.e. start, end, CIGAR derived configuration) used
for further base qualities calculations. The program calculates base
qualities only for the positions where at least one alternative base is
present (Algorithm 2).

2.2.3 Merging and rendering the results

Once all reads in each virtual partition are analyzed, the program
calculates the set of final pileup records. Depending on the configur-
ation, our modular pileup algorithm can generate different outputs:
full pileup (SeQuiLa-pileup), pileup without base qualities (SeQuila-
pileup-no-qual) or depth of coverage only (SeQuiLa-pileup-cov-
only).

2.3 Technical design
Our algorithm is implemented as a plugin to Apache Spark Catalyst
optimizer (Armbrust et al., 2015). We used its three extension
points: (i) SQL Analyzer—to register new table-valued functions, (ii)
Planner—to add our optimized execution strategies for pileup calcu-
lations and (iii) Logical Optimizer—to detect
CreateDataSourceTableAsSelectCommand and
InsertIntoHadoopFsRelationCommand actions and apply optimiza-
tions for direct vectorized writes into the Optimized Row Columnar
(ORC) files (Fig. 2).

We designed the relational model to represent alignments and
pileup function results as proposed in Sun et al. (2018) and Smith
et al. (2021). Our package provides both SQL (Structured Query
Language) and Dataframe programming interfaces for the Scala and
Python (https://github.com/biodatageeks/pysequila) languages.

For reading Binary Alignment Map (BAM) and Compressed
Reference-oriented Alignment Map (CRAM) files our solution can
use Hadoop-BAM (Niemenmaa et al., 2012) or disq libraries as con-
figured by the end-user. For better support of the CRAM files that
have been recently added to the HTSJDK library, we extended the
Hadoop-BAM project (https://github.com/biodatageeks/Hadoop-
BAM). Also, minor changes required for serialization of genomic
intervals parameters were added to the disq (https://github.com/
mwiewior/disq) library. For saving output we support not only
ORC but also Parquet file format (Ivanov and Pergolesi, 2020). In
our code, we re-used partition coalescing mechanism as imple-
mented in the GATK.

2.4 Essential optimizations
Our main goal was to deliver a fast, distributed and scalable imple-
mentation of the pileup algorithm. In additional to the already pre-
sented novel algorithm, we highlight other essential implementation
decisions that improve overall software performance. They can be
grouped into three main categories: (i) optimization of distributed

Algorithm 2 SeQuiLa-pileup

Require: ref: Reference sequence

conf: Configuration

PartitionSet, RDD (Resilient Distributed Dataset) contain-

ing all reads’ partitions

procedure CALCULATEPILEUP(ref, conf)

2: for p 2 PartitionSet do

aggregates :¼ assembleAggregatesðp; conf Þ
4:

generatePileupRecordsðaggregates; ref ; conf ;p:lb; p:ubÞ
end for

6: end procedure

procedure ASSEMBLEAGGREGATES(partition, conf)

8: agg :¼ initAggregateForContig

for read 2 partition do

10: agg:events :¼ calculateCoverageEventsðreadÞ
if conf :includeAlts then

12: agg:alts þ¼ calculateAltsðagg; read;MDTagÞ
agg:treeCache þ¼ createReadSummary(agg, read)

14: end if

end for

16: end procedure

procedure GENERATERECORDS(aggregates; ref ; conf ; lb;ub)

18: for a 2 aggregates do

for pos 2 0::ub do

20: sum :¼ cumulativeSumða:events; posÞ
if pos >¼ lb and coverageChange or hasAlt then

22: if conf :includeQuals then

quals :¼ calculateQualsða:treeCache;posÞ
24: end if

createRowðsum; ref ; a:alts;qualsÞ
26: end if

end for

28: end for

end procedure

Algorithm 1 Reads-aware partitioning: Calculating lower(lb)

and upper(ub) bounds for self-contained read partitions

Require: P, RDD (Resilient Distributed Dataset) containing

all reads’ partitions

1. for i 2 ð0; lengthðPÞ � 1Þ do

2. rðiÞ  pðiÞð0Þ get the first read in i partition

3. lbðiÞ  rðiÞstart get the lower bound of i partition

4. end for

5. for j 2 ð0; lengthðPÞ � 1Þ do construct interval tree of all

reads overlapping any of lbðjÞstart

6. it  IntervalTreeðpðiÞ:getReadsOverlappingðlbðjÞstartÞÞ
7. end for

8. for i 2 ð0; lengthðPÞ � 1Þ do

9. if i 6¼ ðlengthðPÞ � 1Þ then

10. ubðiÞpos  maxðit:overlappersðlbðiþ 1ÞposÞÞ
11. else

12. ubðiÞpos  Int:maxValue

13. end if

14. if i > 0 then

15. lbðiÞ  ubði� 1Þ
16. end if

17. end for

18. return (lb, ub)
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processing, (ii) Scala source code micro-optimizations, and (iii) out-
put vectorization and fine-tuning.

2.4.1 Optimization of distributed processing

In the straightforward approach where the default partitioning is
used, pileup implementation in Apache Spark would to be split into
two stages with a data shuffle step in between. This would require
either explicit caching of the intermediate results from the first one
or at least partial recomputing of the evicted partitions to get the
final results. Implementation of a custom partitioning mechanism
(Algorithm 1) to appropriately split data and determine the bounda-
ries for each split was essential to achieve a single-pass solution
without any extra data exchange between the executors or caching
intermediary results.

2.4.2 Source code micro-optimizations

We have observed an apparent speedup when using an interval tree
to store a short representation of reads (ReadSummary) since data
retrieval from this structure is performed frequently with interval
conditions. After analyzing the profiling results in a form of flame
graphs obtained with async-profiler (Nisbet et al., 2019), we identi-
fied the most time-consuming and frequently invoked methods, such
as calculation of the relative position in a read for a given genomic
coordinate, and re-implemented them in the state-aware manner,
thus eliminating traversing collection on each call. Similarly, we sub-
stituted computationally expensive CIGAR parsing and interpret-
ation with fast lookups to lazily evaluated custom objects with
derived cigar configuration with quick checks for existence of clip
(and its length) or deletion, as well as deletion and insertion
positions.

2.4.3 Output and auxiliary optimizations

The default output generation mechanism, which accounted for
around 30% of the total processing time of our algorithm turned
out to be another bottleneck. Therefore, we have implemented two
novel approaches for optimizing output rendering.

Firstly, we have developed a custom direct pileup record projec-
tion to Apache Spark’s internal binary row representation applying
several micro-optimizations, e.g. casting reference bases and contig
names to bytes and caching them in map to avoid repeating this task
for each record. This mechanism can be used for further processing
pileup rows within Spark-SQL engine as well as for persisting the
results in any supported file format.

The second optimization is intended for improving performance
of saving the results in ORC file format only. Inspired by the idea of
direct-path load introduced in the relational database management
systems, in particular in Oracle database (Heller, 2019), we imple-
mented a mechanism that enables bypassing Spark’s internal data
representation and provides the support for vectorized row batches
(as proposed in Shen et al., 2021) that are used for producing ORC
output.

Other auxiliary optimizations including external dependencies
configuration and environment setup were evaluated, and their im-
pact on the overall performance is described in Section 3.

2.5 Cloud readiness
The increasing availability of cloud computing services for research
is gradually changing the way scientific applications are developed,
deployed and run (Vaillancourt et al., 2020). To ensure portability
and reproducibility of SeQuiLa-based data processing, we followed
the Infrastructure as Code (Guerriero et al., 2019) and DevOps
principles for setting up the computing resources that can be used
for both private and public clouds deployments. Hence, we have
used technologies like Terraform (for cloud infrastructure provi-
sioning, Modi, 2021), Helm (for deploying applications on
Kubernetes clusters, Shah and Dubaria, 2019), and Docker (for ap-
plication code packaging and shipment, Boettiger, 2015). SeQuiLa
has been successfully deployed to both popular managed Hadoop
services like Google Dataproc (utilized also in Krissaane et al.,
2020) and managed Kubernetes services like Google Kubernetes
Engine (GKE), Azure Kubernetes Service, or Amazon Elastic
Kubernetes Service. Figure 3 presents an exemplary setup on GKE
using the spark-on-k8s-operator and SeQuiLa application defined
as a Kubernetes Custom Resource Definition. This architecture
was suggested in Castro et al. (2019) as a preferred Apache Spark
deployment scenario for scaling data analytics workloads and ena-
bling efficient, on-demand utilization of resources in the cloud in-
frastructure. More detailed information on setup and
corresponding Terraform modules can be found in the dedicated
GitHub repository (https://github.com/biodatageeks/sequila-cloud-
recipes).

2.6 Features
Table 2 summarizes the features of the SeQuiLa package and com-
pares them with state-of-the-art software, including samtools and
GATK.

SeQuiLa-pileup operates on sorted aligned sequencing reads
both in BAM and CRAM format. The fast pileup algorithm requires
reads to have MD Tag attribute which can be determined during the
alignment process or calculated and added to BAM files independ-
ently after alignment is completed. MD tag is described in https://
samtools.github.io/hts-specs/SAMtags.pdf as a string encoding the
mismatched and deleted reference bases, used in conjunction with
the CIGAR and SEQ fields to reconstruct the bases of the reference
sequence interval to which the alignment has been mapped. This can
enable variant calling without requiring access to the entire original
reference. Input files can be read either from the local file system,
distributed file system or object storage using a custom data source
which allows representing input reads as relational data. The dataset
used for calculating the pileup can be restricted according to the

P1

ub2,lb3 ub3

A

B

C

C3=P3

D

E

ub1,lb2lb1

C1=P1+P2

C2=P2+P3

V3V2V1

P2 P3

Fig. 1. Reads-aware partitioning algorithm: original distributed partitions (A); read

assignment (color coded) to original partitions according to alignment starting pos-

ition (B); virtual partitions and their boundaries calculated by Algorithm 1 (C); coa-

lesced partitions (D); and read assignment (color coded) to coalesced partitions and

corresponding virtual partitions (E). Note that some of the reads will be processed

in more than one coalesced partition. This approach produces on average equally

sized virtual partitions (no data skewness) except for the first one and last one that

are a bit larger and smaller than the rest, respectively

SQL API

Dataframe/Dataset
API

Parser

Analyzer Logical Optimizer Planner

ResolveTableValuedFunctionsSeq

case CreateDataSourceTableAsSelectCommand => ...
case InsertIntoHadoopFsRelationCommand => ...

 case PileupTemplate => ...

Fig. 2. SeQuiLa extensions to Apache Spark Catalyst optimizer
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user-provided parameters including reads bit flag and mapping
quality.

Samtools and GATK produce verbose output for every coordin-
ate. On the contrary, our software implements lossless block com-
pression of adjacent genomic positions which results in output an
order of magnitude smaller. SeQuiLa-pileup result includes the gen-
omic coordinates, reference bases, depth of coverage, the ratio of
reference to non-reference bases, alternative bases (strand-aware)
with occurrences counts and optionally the base qualities for the
positions where at least one non-reference base is present. The out-
put is stored in the popular big data-ready file formats such as ORC
or Parquet making it easy to run further analyses, e.g. in Apache
Spark or tools like Trino (Sethi et al., 2019).

The SeQuiLa package is also distributed as a Python module
(https://github.com/biodatageeks/pysequila) and can be used on
local resources or cloud infrastructure. It can be easily integrated
with widespread open-source notebook-based environments for
data analysis including Google Colab and Jupyter.

3 Results

3.1 Datasets
We have used publicly available Exome Sequencing (ES) and Whole
Genome Sequencing (WGS) datasets. We performed quality assur-
ance tests on both short reads (sample NA12878) and long reads
(guppy), represented in BAM and CRAM formats that were aligned
to human reference genome GRCh38 with MD tags included.

3.2 Investigated solutions
Table 2 summarizes the functionalities of tools included in our com-
parison. Among the solutions included in the benchmark, only
Spark-based GATK and SeQuiLa offer both multi-threaded and dis-
tributed versions of the depth coverage and pileup algorithms. For
ADAM and SeQuiLa we used Apache Spark 3.1.2 runtime, in the
case of GATK that does not provide support for Spark 3.x, we used
Apache Spark 2.4.3. Megadepth, mosdepth and samtools 1.14 are
multi-threaded applications but only the parts of their algorithms re-
sponsible for the IO operations (BZGF block compression/decom-
pression) are parallelized—the remaining stages of their algorithm
are sequential.

We have also included the previous version of SeQuiLa software
(0.6.11) to assess the improvement of our single-pass and cache-less
SeQuiLa-pileup-cov-only algorithm over the previously published
SeQuila-cov. Several tools require additional input, i.e. genomic
intervals in case of GATK’s coverage and PaCBAM’s (Valentini
et al., 2019) pileup or the list of genomic positions in case of aseq’s
(Romanel et al., 2015) pileup that restricts the processed data and
affects algorithm’s computational complexity therefore the afore-
mentioned solutions were not included in the final benchmark.

3.3 Testing environment
3.3.1 Single machine

Table 3 presents key information regarding the hardware and oper-
ating system configuration of the machine used for benchmark pur-
poses. No hardware or software virtualization was used.

3.3.2 Hadoop cluster

Hadoop cluster (HDP 3.1.4) consists of 6 master and 34 worker
nodes, 680 (1360 logical) cores, 700 TB of Hadoop File System
(HDFS) disks, 6.8 TB of RAM for Yet Another Resource Negotiator
(YARN) node pool and a 100 Gbits interconnect network. Master
node specification was the same as in the single-node benchmark, in
the case of workers the only difference was in disks configuration—

Table 3. Technical specification—single node.

Processor Base freq (GHz) CPUs Total cores (logical) Memory (GB) Operating system Disk

Intel(R) Xeon(R)

E5-2618L v4

2.20 2 20 (40) 256 RHEL 7.8 (Maipo) 3TB (RAID1)

Fig. 3. SeQuiLa deployment on GKE with spark-on-k8s-operator with Kubernetes

Custom Resource Definition, Prometheus for runtime metrics collection and

Grafana as observability platform

Table 2. Investigated solutions

Tool Coverage Pileup MQF SA MT DIST

samtools 1.9 (Li et al., 2009) þ þ þ þ – –

samtools 1.14 (Danecek et al., 2021) þ þ þ þ þ (I/O for coverage) –

GATK 4.2.3.0 (McKenna et al., 2010) þ (intervals) þ – – – –

GATK-Spark 4.2.3.0 þ (intervals) þ – – þ þ
ADAM 0.36.0 (Massie et al., 2013) þ – – – þ þ
megadepth 1.1.1 (Wilks et al., 2021) þ – – – þ (I/O) –

mosdepth 0.3.2 (Pedersen and Quinlan, 2018) þ – – – þ (I/O) –

sambamba 0.8.1 (Tarasov et al., 2015) þ – – – – –

SeQuiLa 0.6.11 (Wiewiórka et al., 2019) cov – – – þ þ
SeQuiLa 1.0.0 pileup-cov-only pileup 1 1 1 1

MQF, Mapping Quality Filter; SA, strand-awareness; MT, multi-threaded; DIST, distributed.
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each node has additional 12 disks in Just a Bunch of Disks setup for
HDFS storage.

3.4 Performance testing scenarios and configuration
We have arranged four testing scenarios: (i) the pileup function per-
formance on the local machine and (ii) its scalability characteristics
on the Hadoop Cluster, (iii) the depth of coverage function perform-
ance on the local machine and (iv) its scalability on the Hadoop
Cluster. All tools from Table 2 were included in the presented bench-
marks. ES and WGS alignment datasets in the BAM format have been
used as inputs. In the case of tools (ADAM, GATK and SeQuiLa) run-
ning on top of Java Virtual Machine (JVM) we used three distribu-
tions of Java Development Kit (JDK)—for a single node, we used
GraalVM CE JDK8 for GATK (it does not support JDK11 yet) and
GraalVM CE JDK11 for ADAM and SeQuiLa for running tests on
the Hadoop cluster OpenJDK8 was used for all solutions. For tests
using disq library, an additional BAM index was created.

3.5 Results pileup
In the pileup benchmarks (Fig. 4), SeQuiLa-pileup proved to be the
fastest tool outperforming samtools in the single thread scenarios by
1:25x� 1:4x and GATK (both Spark, and non-Spark based) �3:9�
6:5x GATK (both Spark, and non-Spark based). In the case of
Hadoop cluster benchmarks SeQuiLa-pileup again proved to be
faster by �2:8� 5:3x than GATK that also required twice as much
memory (8 instead of 4GB) per Spark executor to be able to com-
plete the computations. It is worth noting that we were unable to
run GATK with 10 or fewer Spark executors (10 cores) facing errors
related to too many opened files (even after increasing Linux

nofile limit to more than 1 million that is more than the recom-
mended value for Hadoop clusters). We have verified that the algo-
rithm’s modularity is gainful when the user does not need to obtain
the full pileup summary statistics. In particular, if reporting of base
qualities is not required, SeQuiLa-pileup-no-qual that improves the
performance by �35% (compare SeQuiLa-pileup and SeQuiLa-
pileup-no-qual in Fig. 4A) can be used. The correctness of the algo-
rithm output was ensured by its rigorous comparison to the results
of Samtools mpileup (v 1.14).

3.5.1 Java virtual machine optimizations

For development and local testing purposes, we have chosen
GraalVM which uses an optimized compiler, generating high-
performance code, and therefore noticeably accelerates the execution
of the JVM-based applications (Sipek et al., 2020). Additionally, on
the source code level, we have applied inlining annotations for fre-
quently called concise methods which are further handled by the Scala
compiler, thus avoiding the overhead of method invocation. In our
diagnostic tests, we have confirmed that GraalVM choice results in
15% speedup while in-lining improved the timing by another 3%
(Fig. 5).

3.5.2 Input–output optimizations

When performing direct vectorized writes into ORC files we have
saved 18% of the computing time. We also take advantage of Intel’s
Genomics Kernel Library (GKL) providing high-performance opera-
tions of decompressing BAM file records. Our benchmarking con-
firms that the proper use of GKL’s methods results in a 12%
decrease of compute time (Fig. 5).
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Fig. 4. Pileup summary function comparison. Tests were performed on a single node for ES (A), WGS (B), and on the Hadoop cluster for ES (C), WGS (D)
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3.6 Results depth of coverage
In the case of both ES and WGS datasets (Fig. 6), megadepth
proved to be the fastest tool in a single-machine single thread setup
outperforming the second one, SeQuiLa-pileup-cov-only by 1.3–
1.6�. The gap between them decreases steadily with an increasing

number of threads. While processing ES and WGS data SeQuiLa-
pileup-cov-only becomes the fastest tool when 5 and 10 threads are
used, respectively. It is worth emphasizing that for the following
tools: megadepth, mosdepth, and samtools, we observed very simi-
lar performance characteristics—in contrast to SeQuiLa-pileup-
cov-only they do not scale up beyond 5–10 threads at all. These
results confirm the fact that these tools only implement the parallel
read and blocks decompression operations and the main part of
their algorithms does not take advantage of multiple cores. For
ADAM, we only measured the single-threaded performance that
proved to be substantially worse than the remainder of the best
performing tools (�40x). Last but not least, we confirmed that the
current version of the coverage calculations algorithm imple-
mented in SeQuiLa 1.0.0 package (SeQuiLa-pileup-cov-only) is ap-
proximately 2� faster than our previous version of the coverage
algorithm (SeQuiLa-cov) described in (Wiewiórka et al., 2019)
[compare SeQuiLa-pileup-cov-only (1.0.0) and SeQuiLa-cov
(0.6.11) on Fig. 6A].

In the case of WGS on the Hadoop cluster (Fig. 6), we bench-
marked tools allocating from 10 to 200 cores. SeQuiLa-pileup-cov-
only outperformed ADAM on average by more than an order of
magnitude (11� 16x). We used the same memory (8GB—driver,
4GB executor) and Central Processing Unit configurations (1 core)
for both Spark processes to ensure comparability of the results be-
tween solutions. Also Spark dynamic allocation mechanism has
been explicitly disabled. In the case of ADAM tests, we observed
random fails of Spark tasks (or even the whole stages) due to net-
work timeouts.
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Discussion

Our pileup method is designed for compatibility with modern dis-
tributed computing systems originating from the Hadoop ecosystem
mostly implemented using JVM languages such as Java or Scala.
This approach incurs additional overheads and causes inefficiencies
in the single-node deployments that justify why it does not signifi-
cantly outperform samtools (a tool written in C language compiling
to the native code) in a single thread comparisons. Our pileup algo-
rithm performs especially well on the alignment files with the high-
quality short reads when MD tags contain a relatively low number
of mismatch/deleted bases. Calculating the complete pileup summa-
ries from the long reads with a large number of mismatches is more
challenging for our approach and requires additional modifications
that we plan to introduce in its future versions. This limitation does
not apply to calculations of the depth of coverage. It also favors
BAM over CRAM alignment file formats (data not shown). This is
because both the alignment file index scans (random access) as well
the sequential reads are much slower (�3� 4x) in the case of
CRAM when compared to BAM file format (our results confirm the
findings presented in Supplementary Material) (Bonfield et al.,
2019). Finally, saving results in the distributed processing can be
substantially reduced with adding support for direct, vectorized
writes (currently available in the local mode) that is on our project
roadmap as well.

Since the complexity of the cloud-native distributed computing
systems have been acknowledged in many studies, including
Vaillancourt et al. (2020), we have also prepared ready-to-use cloud
deployment examples that can help users to start using SeQuiLa in
public cloud environments.

4 Conclusions

We present a new module that extends and optimizes our SeQuiLa
Apache Spark library. This component introduces a new algorithm
for fast, scalable, and fully distributed computation of pileup sum-
mary from the alignment files (BAM, CRAM). Our solution com-
bines a distributed computing engine based on the extended Apache
Spark Catalyst query optimizer with the SQL interface for handling
large-scale processing and analyzing next-generation sequencing
datasets in a consistent tabular form. This approach will help to fa-
cilitate the adoption of scalable solutions among users that are nei-
ther proficient in distributed computing nor in cloud infrastructures
as envisioned in Lawlor and Sleator (2020).
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