
WARSAW UNIVERSITY OF TECHNOLOGY

ENGINEERING AND TECHNOLOGY

Information and Communications Technology

PhD Thesis

Distributed algorithms

and computational methods for scalable processing

of high-throughput sequencing data

Marek Wiewiórka, MA, BSc

Supervisor:

Tomasz Gambin, PhD, DSc, Associate Professor

Warsaw 2023

Acknowledgements

First and foremost, I wish to express my deepest gratitude to my supervisor and my

friend, Prof. Tomasz Gambin, for supporting and guiding me throughout my pursuit

of this doctorate. I would also like to thank my previous supervisors - Prof. Piotr

Gawrysiak and Prof. Henryk Rybiński - for helping me take the first steps towards my

Dissertation. My sincere thank you goes to Dr. Michał Okoniewski, who introduced me

to bioinformatics, when I was on my PhD scholarship in Switzerland, and immensely

assisted me with my first research paper. I am also grateful to all my Colleagues from

the Institute of Computer Science at the Warsaw University of Technology, with whom I

have had the privilege to work over the last years.

I want to thank Prof. Paweł Stankiewicz for his insightful comments and suggestions

that made the content of this thesis more understandable.

Many of the ideas from this Dissertation would not come into life without Agnieszka

Szmurło. I am truly grateful for our wonderful collaboration, all inspiring discussions,

hours-long brainstorming sessions and then. . . starting from scratch all over again but in

a different way – thanks a lot, Aga!

My special thanks goes to Rafał Małanij, who I can always count on and who brings

tons of positive energy and „we-can-do” attitude to our small research team.

I am also grateful to all my GetInData Colleagues for their friendship, support and

endless inspiration to tackle Big Data and Cloud Computing challenges.

I want to thank my lovely wife Dorota for being patient, supportive and helpful in

numerous ways (many of which I did not even acknowledge, for sure!).

Last but not least, I want to thank my dearest Parents who planted a seed for my

interest in science and engineering from the very first LEGO set they bought me, and

who never stopped believing in me.

Warsaw, Poland, March 2023

Marek Wiewiórka

3

4

Abstract

Recent advances in high-throughput sequencing (HTS) have contributed to an unprece-

dented growth in the amount of generated multiomics datasets. Reaching the critical mile-

stone of $1,000 in the cost for a complete genome sequence of a single individual (whole

genome sequencing, WGS) in the mid 2010s opened the door to many population-scale

or national genome initiatives, such as Genomics England’s ‘100 000 Genomes Project’ or

1000 Polish Genomes.

Nonetheless, many popular bioinformatics methods for secondary and tertiary data

analyses exhibit high computational complexity. To compound the situation, a great

number of the existing genomic analysis tools and algorithms are intrinsically sequen-

tial and incapable of exploiting the power of distributed computing. In particular, truly

scalable methods for common genomic operations, such as calculating depth of coverage,

summarizing short reads in a form of pileup and joining datasets using interval intersec-

tions, have not been yet proposed.

Furthermore, very little studies have addressed the challenges of designing genomic

cloud platforms for distributed processing and analysis of HTS data. Equally, the idea

of unified declarative programming approaches for expressing genomic operations using

Structured Query Language (SQL) has not gained enough traction either.

This Dissertation aims at bridging those gaps by presenting a Genomic Data Lake-

house concept together with the SeQuiLa project that implements novel scalable methods

for the aforementioned computationally intensive genomic operations. It is organized in

a series of six publications proceeded by an introduction outlining the HTS data analysis

challenges and current advances.

Keywords: Big Data, Distributed computing, Cloud computing, High-throughput se-

quencing, Data Lakehouse architecture

5

Streszczenie

Najnowsze odkrycia w sekwencjonowaniu wysokoprzepustowym (HTS) przyczyniły się do

bezprecedensowego wzrostu ilości generowanych danych multiomicznych. Przekroczenie

w połowie pierwszej dekady XXI w. historycznego progu, jakim był koszt kompletnej

sekwencji genomu człowieka (sekwencjonowanie całego genomu, WGS) poniżej tysiąca

dolarów, otworzyło drzwi do wielu narodowych inicjatyw genomowych, takich jak 100,000

Genomes Project w Wielkiej Brytanii, czy 1000 Polskich Genomów.

Niemniej jednak, wiele popularnych metod bioinformatycznych do analizy drugo-

i trzeciorzędowej wykazuje dużą złożoność obliczeniową. Większość istniejących narzędzi

i algorytmów analizy genomicznej jest z natury sekwencyjna i nie jest w stanie w pełni

wykorzystać możliwości rozproszonego modelu obliczeń, co czyni sytuację jeszcze trud-

niejszą. W szczególności, jak dotąd nie zaproponowano prawdziwie skalowalnych metod

dla typowych operacji genomicznych, takich jak obliczanie głębokości pokrycia, pod-

sumowywanie krótkich odczytów (ang. pileup) i łączenie zbiorów danych za pomocą

przecięć przedziałowych.

Ponadto, znikoma liczba badań podejmuje temat wyzwań związanych z projektowaniem

genomicznych platform chmurowych do rozproszonego przetwarzania i analizy danych

pochodzących z HTS. Podobnie mało uwagi poświęcono idei wykorzystania zunifikowanego

podejścia, realizującego deklaratywny paradygmat programowania do wyrażania operacji

genomicznych przy użyciu języka Structured Query Language (SQL).

Niniejsza rozprawa ma na celu wypełnienie tych luk poprzez przedstawienie koncepcji

Genomicznej Platformy Danych typu Lakehouse oraz zaprezentowanie projektu SeQuiLa,

implementującego nowatorskie skalowalne metody dla wyżej wymienionych, obliczeniowo

wymagających, operacji genomicznych. Na poniższą pracę składa się seria sześciu pub-

likacji poprzedzonych wstępem, w którym Autor opisuje wyzwania i najnowsze osiągnięcia

w dziedzinie analizy danych genomicznych.

Słowa kluczowe: Big Data, obliczenia rozproszone, obliczenia chmurowe, sekwencjonowanie

wysokoprzepustowe, architektura Data Lakehouse

6

Contents

1 Introduction 9

1.1 From MapReduce to Cloud Computing and Data Lakehouse era 10

1.2 HTS sequencing overview . 13

1.2.1 Primary analysis . 13

1.2.2 Secondary analysis . 14

1.2.3 Tertiary analysis . 15

1.3 Applications of Big Data techniques to HTS data analysis 15

1.4 Challenges leading to Genomic Data Lakehouse 20

1.5 Aim and Research Theses . 23

1.6 Publications constituting this Dissertation 23

2 Main scientific contribution of the Author of the Dissertation 27

2.1 Genomic data distributed processing in data lakes [P1] 28

2.2 Genomic data querying in distributed data warehouses [P2] 29

2.3 Genomic Data Lakehouse . 31

2.3.1 Distributed machine learning framework for genomic data[P3] . . . 31

2.3.2 Scalable range joins[P4] . 31

2.3.3 Scalable depth of coverage and pileup calculations[P5], [P6] 33

3 Scientific achievements 37

3.1 Source code repositories . 37

7

3.2 Own research grants . 38

3.3 Participation in research grants . 38

3.4 Other research publications . 38

3.5 Book chapters . 39

3.6 Conference talks . 39

3.7 Conference posters . 40

3.8 Prizes and awards . 40

4 Conclusions and future work 43

5 Bibliography 45

6 Copies of the publications constituting the Dissertation 77

6.1 SparkSeq: Fast, scalable and cloud-ready tool for the interactive genomic

data analysis with nucleotide precision [P1] 79

6.2 Benchmarking distributed data warehouse solutions for storing genomic

variant information [P2] . 109

6.3 Scalable Framework for the Analysis of Population Structure Using the

Next Generation Sequencing Data [P3] . 125

6.4 SeQuiLa: an elastic, fast and scalable SQL-oriented solution for processing

and querying genomic intervals [P4] . 135

6.5 SeQuiLa-cov: A fast and scalable library for depth of coverage calculations

[P5] . 138

6.6 Cloud-native distributed genomic pileup operations [P6] 145

7 Co-Authors’ statements 155

8

CHAPTER 1

Introduction

Since the unveiling of the double helix structure of deoxyribonucleic acid (DNA)[1] in

1953, scientists around the world have been developing methods for DNA sequencing, i.e.

decoding the order of single nucleotide in various biological molecules at five key omics

levels: genome, epigenome, transcriptome, proteome and metabolome[2]. Over the past

15 years, there has been exponential growth in sequencing capacity[3] especially thanks

to the advances in High-throughput sequencing (HTS) technologies of the second (also

called next-generation sequencing, NGS) and third generation[4]. Reaching the important

milestone of $1000[5] for full sequence of an individual genome (whole genome sequencing,

WGS) in the mid 2010s has opened the door to many population-scale, national or digital

genome initiatives such as Genomics England’s ’100 000 Genomes Project’[6], NIH All of

Us Research Program[7] or 1000 Polish Genomes[8]. As long as the trend continues, the

estimated storage space required just for human genomes by the year 2025 may reach the

level of 2-40 exabytes[9].

Nonetheless, many studies [2, 10] have indicated the development of robust and scal-

able methods of HTS data analysis to be the key enabler of further advances in the

genomics domain. Moreover, in the same publication, application of high-performance

computing (HPC) clusters, graphic processing units (GPUs), field-programmable gate

arrays (FPGAs), Big Data technologies and Cloud Computing have been proposed as

9

possible solutions. This is consistent with more recent studies[11], in which the authors

have concluded that in the era with no Dennard scaling, along with reduced Moore’s Law,

further exploitation of parallel computing adhering to Amdahl’s Law is the only viable

remedy for achieving higher rates of performance improvement. Unfortunately, in many

bionformatics analyses the underlying algorithms and utilized file formats have not been

planned for parallel or distributed execution model, making the shift towards Big Data

programming paradigms challenging[12].

Consequently, this Dissertation aims at exploring the application of distributed com-

puting methods for the design and implementation of scalable algorithms for efficient

querying and analysing of HTS datasets. In particular, it presents new algorithmic strate-

gies for partitioning datasets that store aligned sequences and novel distributed methods

for depth of coverage, genomic pileup calculations and intervals intersections. These

operations constitute the building blocks of the crucial bioinformatics pipelines includ-

ing but not limited to: single nucleotide variants (SNVs), copy number variants (CNVs)

based on read-depth methods[13] and structural variants (SVs) calling as well as variant

annotation[14, 15, 16]. The application of Infrastructure as Code (IaC)[17, 18] approach

to addressing the problem of reproducible and portable genomic scientific computing has

been discussed as well. At the same time, this Dissertaton also presents scalable comput-

ing methods in the much broader context of the cloud-based Genomic Data Lakehouse

[19] architecture, where they naturally fit in. The combination of the above elements may

help to make genomic distributed analysis in the cloud environment accessible to a wider

group of researchers.

1.1 From MapReduce to Cloud Computing and Data

Lakehouse era

The considerable growth of interest in application of dedicated techniques to large-scale

data processing has been often associated with the popularization of MapReduce[20] dis-

tributed programming paradigm in the late 2000s. However, the real wave of its popularity

has begun with the introduction of a production-level open source implementation of the

whole Big Data ecosystem, i.e. Apache Hadoop[21]. It was built upon three layers:

• distributed file system, Hadoop Distributed File System (HDFS)[22], inspired by

10

the Google File System[23],

• computing resources manager – Yet Another Resource Negotiator (YARN)[24],

• data processing engine – Hadoop MapReduce Framework.

Apache Hadoop has revolutionized the way companies and researchers process and

store large datasets in a form of Data Lake[25]. However, MapReduce programming

paradigm (i.e. it was also a processing engine in Hadoop) was considered to be too low-

level and too difficult both to reuse and maintain. Furthermore, it was not well suited for

running ad hoc analysis – since even for common operations like e.g. projection, filtering

or sorting custom code had to be written in languages such as Java [26]. The produc-

tivity of data analysts was seriously limited, as most of them were used to tabular data

abstraction[27] and ability to query data using widely adopted declarative programming

paradigm such as, based on relational algebra principles, Structured Query Language

(SQL) [28]. Two pioneers in the Big Data revolution – Facebook and Yahoo! – almost at

the same time proposed remedies in the form of two higher level languages in the spirit of

SQL that could be compiled under the hood into Hadoop MapReduce jobs and executed

on Hadoop-based computing cluster. Pig Latin[29] open-sourced by Yahoo! combines

declarative data querying heavily inspired by SQL, support for User Defined Functions

(UDFs) to accommodate specialized data processing tasks and procedural programming

that resembles specifying a query execution plan (i.e. a dataflow graph). HiveQL[30] pro-

posed by Facebook, on the other hand, is in-fact an SQL dialect that together with a table

metadata catalog – Metastore builds up a fully-fledged distributed Data Warehouse[31]

on top of a Hadoop cluster.

It is worth mentioning that there were also other attempts to increase adoption of

Hadoop-based data processing among users interested in rapid application development.

First group of projects including Happy, Dumbo and Pydoop[32] as notable examples

tried to add support for MapReduce computations in Python, a language that is widely

considered to have substantially lower barrier of entry[33] than Java or C++. On the

other hand, Hadoop Streaming[34] included in the Hadoop distribution allows users to

specify arbitrary executables or scripts written in any programming language in order to

accomplish the map and reduce functions through the standard input and output.

Finally, the Apache Mahout and Cascading[35] projects aimed at streamlining machine

11

learning and data processing workflows development respectively by abstracting most of

the MapReduce programming complexity and introducing a high-level Java application

programming interface (API).

The Apache Spark[36, 37] distributed framework draws heavily on the experience of

the aforementioned projects. It attempts to address out-of-the-box their shortcomings

by providing end user with a high-level functional programming API for Scala, Java,

Python and R languages with relational, SQL-oriented declarative way of querying data.

Furthermore, it is shipped with additional modules that implement many popular graph

and machine learning algorithms[38]. Last but not least, it relies on the in-memory

computational model that makes it especially efficient in interactive data processing[39].

Current advances in Cloud Computing environments have simplified the deployment of

Big Data workloads when compared to the on-premise Hadoop clusters, and can be sum-

marized under the following three categories: Kubernetes-based[40, 41], fully managed

Hadoop services[42] and serverless services[43] like e.g. Google Cloud Dataproc Serverless

or Amazon Elastic Map Reduce (EMR) Serverless. Unlike Hadoop computing model that

was designed to run on clusters of commodity hardware and rely on the data locality[44]

concept, all of the above scenarios implement decoupling of compute and storage to sup-

port independent scalability of both layers, provide a better performance-cost ratio and

better data availability[45].

The aforementioned developments in Big Data gave rise to new paradigms in data

architectures such as Data Lakehouse[46, 47, 19]. It has been recently proposed to respond

to the dominant in the industry two-tier data lake + data warehouse implementation

pattern. Its main design principles can be summarised as follows:

• low-cost and efficient storage for very large-scale heterogeneous data, backed by

cloud object storage systems (e.g. Azure Data Lake Store (ADLS)[48], Amazon

Simple Storage Service (S3)[49], Google Cloud Storage (GCS)[50]) or other dis-

tributed file systems (e.g. HDFS),

• first-class support for machine learning and data science workloads with distributed

DataFrame-like APIs, such as Koalas [51] project that has been recently merged into

Apache Spark main codebase or Snowpark DataFrames available on the Snowflake

platform[52],

12

• state-of-the-art SQL analytical queries performance with the general-purpose ex-

tensions to the existing SQL engines such as vectorized, native operators pro-

vided by the Photon[53] and Velox[54] projects or research domain-specific like

ASTROIDE[55],

• open direct-access file formats such as Parquet, Optimized Row Columnar (ORC)[56],

DeltaLake[57], Hudi[58] or Iceberg[59] to enable the above mentioned two types of

data access patterns: Business Intelligence, which extracts a small amount of data,

and Machine Learning, which usually processes large datasets.

1.2 HTS sequencing overview

Bionformatics workflows for HTS analysis consist of a number of consecutive phases be-

ginning with biological samples preparation, followed by sequencing, multistage data

processing and final results interpretation. HTS enables versatile types of sequencing

protocols including genome sequencing (DNA-seq), transcriptome profiling (RNA-seq),

DNA-protein interaction assessment (ChIP-seq) and epigenome characterization (ChIP-

seq, BS-seq, DNase-seq and FAIRE-seq)[60]. HTS analysis pipelines can differ substan-

tially, depending on which omics level they operate, but from a high-level perspective they

are traditionally split into three stages: primary, secondary and tertiary analysis[61]. Fig-

ure 1.1 and description below present the HTS data pipeline in the case of DNA-seq.

1.2.1 Primary analysis

The primary analysis is a pipeline stage during which genomic sequences are generated.

This step takes place in a sequencing instrument (sequencer) that detects base pairs

(bp) from the DNA molecule fragments in the base calling process. Depending on the

technology used, the source of the measured signal can be synthesis, combinatorial probe

anchor synthesis or ligation of a DNA fragment[63]. Moreover, each base call is augmented

with a calculated quality score denoting the estimated probability that a given base pair

has been wrongly detected. The typical length of short sequencing reads of the second-

generation technology equipment, resulting from the base calling step, range from 50 to

300 bp. In the case of the third-generation sequencing machines, reads are much longer

– 10–30 kbp genomic libraries are common[64]. The output of this stage is produced in

13

Figure 1.1: An overview of the next generation sequencing (HTS) data pipeline

in the case of DNA-seq protocol. The HTS bioinformatics workflow is subdivided

in the primary (blue), secondary (orange) and tertiary (green) analysis[62].

a form of a set of text files containing sequenced reads in the FASTQ[65] format. For

each read, the following data are stored: (i) the raw sequence symbols; (ii) corresponding

quality scores (encoded as American Standard Code for Information Interchange (ASCII)

characters); (iii) record identifiers (in instrument-specific data format).

1.2.2 Secondary analysis

The secondary analysis stage encompasses pipelines producing two main categories of re-

sults: aligning reads with previously assembled reference sequence of the same species and

optionally detecting various discrepancies between them or performing de novo assembly

of the genome when there has not been one revealed yet[62]. In the latter case, a new

reference sequence in a FASTA[66] file format is generated. However, more often the ref-

erence genome is already in place and then the study is focused on mapping reads to the

genome by a dedicated class of tools called read aligners [67]. Typically, they produce the

14

output in the form of Sequence Alignment Map (SAM) or in its binary representation,

BAM file format[68]. An alternative file format CRAM[69] offering lossless reference-

based compression as well as optional lossy encoding of quality scores with 40-50% space

saving has also been put forward. The final step of the secondary analysis, preceded

by post-alignment preprocessing routines, like marking read duplicates and recalibrating

base quality scores, is to perform various variant calling, including SNV, CNV and SV.

This step results in producing a set of files in variant call format (VCF)[70].

Notably, read alignment, read deduplication, read pileup required among others for SNV

calling and depth of coverage calculations crucial for CNV calling are the most computa-

tionally expensive[71, 15], especially in the case of high-coverage WGS samples required

for diagnostics[72].

1.2.3 Tertiary analysis

The tertiary analysis is focused on drawing biological insights from the results of the

secondary analysis combined with other data sources by applying various statistical and

data science methods[73, 74]. In particular, variants of interest can be annotated to

determine their impact on genes, transcripts and protein sequence, as well as regulatory

regions[75, 76]. Therefore, at this stage of genomic analysis there is a great need for an

easy, unified and declarative way of running ad hoc analytical queries joining different

data sources at scale. However, currently tertiary data analysis is, in majority of cases,

still performed with predefined ad hoc scripts, typically invoking multiple command line

software tools for specific operations that are not suitable for Big Data processing[77].

1.3 Applications of Big Data techniques to HTS data

analysis

Since the introduction of Hadoop MapReduce framework, a number of based on it Open

Source projects attempted to increase the efficiency of both secondary and tertiary stages

of the HTS data analysis[78]. Secondary analysis includes highly computational intensive

steps like short reads mapping or variant calling, and this is why most of the efforts in

the bioinformatics research community have been mainly focused on developing suitable

Big Data strategies that address the growing needs of this stage of data analyses[79].

15

The list below presents recent notable projects that address the performance challenges

of secondary analyses:

• ADAM[12, 80] is a genomic data processing system built on Apache Spark. It offers

both a unified storage model based on Apache Avro[81] and Parquet[82] file formats

as well as some extensions to SparkSQL enabling procedural, DataFrame oriented

and SQL interfaces[37]. It implements distributed algorithms for higher level oper-

ations such as calculation depth of coverage and genomic intervals intersection.

• Canolli[83] is an Apache Spark based set of wrappers using Resilient Distributed

Dataset (RDD) pipelining mechanism[84] over various bioinformatics tools such as

bwa-mem[85], vt[86] or samtools.

• DECA[16] is a horizontally scalable implementation of the XHMM[87] algorithm

using the ADAM framework and Apache Spark, that incorporates additional novel

optimizations.

• Genome Analysis Toolkit (GATK)[15] is an actively developed structured program-

ming framework designed for efficient and robust analysis of NGS data, SNV calling

pipelines in particular, based on MapReduce programming paradigm gradually mi-

grated to Apache Spark.

Nevertheless, integrative analysis of multi-omics and other data sources that is the

subject of tertiary analysis is also considered computationally demanding[88, 74]. Along

with the aforementioned paradigm shift towards declarative[89] way of genomic data pro-

cessing, the tools can be further subdivided into three groups [90]. The first group, like

SAMtools and BCFtools[91], requires programming (e.g. shell scripting) expertise to ma-

nipulate and query the aligned reads or variants using command line interface (CLI).

They are designed for a single-node execution model only. With the development of the

underlying HTSlib[92] library, they started supporting multi-threaded encoding and de-

coding of BAM (and SAM) files, offering performance that is comparable or, in some

cases, better than sambamba [93].

The second category of tools aims at adding a clean abstraction over genomic collec-

tions by providing declarative SQL-like interfaces: Genome Query Language (GQL)[94],

GORPipe[95] and more recent SamQL[96]. They neither support the distributed comput-

ing model nor are capable of higher level operations such as calculation depth of coverage

16

or genomic pileup. They are suitable only for querying genomic fragments in the form of

mapped reads using a single node.

The third generation of tools is built upon Hadoop ecosystem technologies with the

state-of-the-art support for distributed computing and declarative programming model:

• Signal Track Query Language (STQL)[97] aims only at analyzing signal tracks com-

posed of a set of genomic intervals without support for reads or variants file formats.

Queries can be expressed in HiveQL extended with some specific syntactic constructs

like TRACK or BINS, that are compiled into MapReduce jobs by the Hive engine.

• GenoMetric Query Language (GMQL)[89, 77] similarly to STQL, provides the abil-

ity to query Genomic Data Model represented as genomic regions and metadata[74].

It implements a custom compiler that is able to translate queries expressed in GMQL

language into a code specific to a given distributed computing engine, among oth-

ers, Apache Spark. GMQL does not support bioinformatics file formats like FASTQ,

BAM or VCF formats. It provides bindings for Python[98] and R [79] programming

languages.

• GenAp[90] provides a custom strategy to Apache Spark’s Catalyst optimizer with

an interval tree based implementation of range join faster than the one introduced

by the ADAM project. It supports SQL interface and enables interoperability with

the ADAM data formats.

• Glow[99], VariantSpark[100] and Hail[101] are Apache Spark based tools focusing

on genome-wide association studies (GWAS). The main difference between them

is the way they store cohort genotypes: MatrixTable distributed two-dimensional

extension of a Table (Hail) or standard Spark DataFrame (Glow). Hail does not

provide an SQL interface.

Table 1.1 summarizes all notable solutions that are addressing performance challenges of

the secondary and tertiary analyses. Furthermore, the presented tools can be categorized

at the highest level from two perspectives: implementational and functional.

From the technical point of view, they can be divided into the following groups:

• non-native distributed implementations around external single-node/single-thread

tools (i.e. wrappers), where a computing framework is used mostly to distribute

17

(stream) the workload and encode/decode the bidirectional communication for op-

erations like, for instance, short read mapping. Examples of such an approach are:

DistMap[102], SEAL[103], SparkBWA[104], and Cannoli[83],

• native distributed tools implementing algorithms for steps in HTS data analysis

pipelines that are novel or adjusted to the distributed computing models offered by

frameworks like Hadoop MapReduce or Apache Spark, e.g. SeqPig[105], GATK[15]

or SeQuiLa[P5, P6], DECA[16], and ADAM[12],

• auxiliary libraries/tools that aim at enabling distributed processing of complex

bioinformatics file formats, e.g. Hadoop-BAM[106], disq[107], or ADAM[12].

From the functional perspective, we can distinguish the following subcategories:

• HTS secondary data analysis pipelines that seek to preserve results concordance

with the existing best practices and recommendations[108], while at the same time

improve the overall performance by distributing some steps of the workflows, e.g.

SparkGA[109], SparkGA2[110], Halvade[111], Halvade-RNA[112],

• distributed tools for tertiary data analysis that encompasses exploratory data anal-

ysis, statistical analysis and machine learning, e.g. VariantSpark[100], Glow[99],

Hail[101], SeQuiLa[P4] or MANGO[113].

SeQuiLa is one of the few tools in the above comparison that contributes to both secondary

and tertiary analyses. Since it is fully compatible with Apache Spark DataFrame and SQL

APIs, SeQuiLa can be easily integrated with all the other Apache Spark-based tools that

share the same interfaces, including ADAM or Glow to enhance performance of sequence

processing and EDA domains.

Tool AM VC SP DA Engine SQL PP Categories

SEAL[103] + – + – MR – – wrapper,secondary

DistMap[102] + – – – MR – – wrapper,secondary

BigBWA[114] + – – – MR – – wrapper,secondary

SparkBWA[104] + – – – Spark – – wrapper,secondary

PipeMEM[115] + – – – Spark – – wrapper,secondary

SeqPig[105] – +/– + +/– MR – – wrapper,tertiary

18

Hadoop-

BAM[106]

– – + – MR/Spark – – auxiliary

Halvade[111] + + – – MR – + wrapper,secondary

Halvade-

RNA[112]

+ + – – MR – + wrapper,secondary

SparkSW[116] + – – – Spark – – native,secondary

DSA[117] + – – – Spark – – native,secondary

CloudSW[118] + – – – Spark – – native,secondary

disq[107] – – + – Spark – – auxiliary

Halvade

somatic[119]

+ + – – Spark – + wrapper,secondary

VC@Scale[120] – + – – Spark – + wrapper,secondary

SparkGA[109] + + – – Spark – + wrapper,secondary

SparkGA2[110] + + – – Spark – + wrapper,secondary

SparkRA[121] + + – – Spark – + wrapper,secondary

Sparkhit[122] + – + – Spark – – wrapper,native

MANGO[113] – – – +/– Spark – – native,tertiary

DECA[16] – + – – Spark – – native,secondary

Cannoli[83] + + + – Spark – – wrapper,secondary

STQL[97] – – – +/– MR + – native,tertiary

GMQL[77, 98,

79]

– – – +/– Spark – – native,tertiary

GenAp[90] – – +/- + Spark + – narive,tertiary

GATK[15] – + +/– – MR/Spark – – native,secondary

ADAM[12] – – + + Spark +/– – native/auxiliary,

sec-

ondary/tertiary

VariantSpark[100] – – – + Spark – – native,tertiary

Hail[101] – – – + Spark – – native,tertiary

Glow[99] – – – + Spark + – native,tertiary

19

SeQuiLa[P4,

P5, P6]

– +/– + + Spark + – native, sec-

ondary/tertiary

Table 1.1: Big Data solutions utilized in the secondary and tertiary analysis of

the HTS data. More comprehensive tool surveys can be found in many review

studies[78, 123, 124, 125]. AM – alignment and mapping, VC – variant calling, SP

– sequence processing (support for distributed analysis of FASTQ/BAM/VCF,

including depth of coverage and pileup operations), DA – Exploratory Data

Analysis (EDA, support for querying and joining different data sources, also

using interval conditions) SQL – support for SQL, Spark – Apache Spark based,

MR – MapReduce based, PP – end-to-end pipeline.

1.4 Challenges leading to Genomic Data Lakehouse

The above presented applications of the Big Data methods and technologies have already

addressed many of the identified bottlenecks in the HTS data workflows, such as short

read mapping or GWAS analyses. Also many improvements have been proposed to the

existing variant calling pipelines optimizing their performance as a whole. However, there

are still relatively few studies tackling the following challenges:

• designing novel or fine-grained optimization of the existing distributed algorithms

for common operations: calculating depth of coverage, summarizing short reads in

a form of pileup, joining datasets using interval intersections,

• designing and benchmarking genomic data warehousing,

• defining an unified programming approach for genomic data processing and analyses,

• proposing novel cloud approaches for cost-efficient, scalable and secure population

scale genomic studies such as Genomic Data Lakehouse architecture,

• adapting IaC approach for provisioning genomic data platforms.

The ideas presented in this Dissertation evolved over time on par with the advances

in Big Data technologies and paradigms. Initial studies[P1, P2] focused on the afore-

mentioned two-tier architecture with the separation of data lake and data warehouse

20

components, whereas the recent SeQuiLa research papers concentrated on the unified

cloud platform with SQL-first approach backed by open file formats and cost-efficient

object storage[P4, P5, P6]. By that means, these publications set the foundation for Ge-

nomic Data Lakehouse platform architecture that adapted the concepts presented in the

subsection 1.1 with SeQuiLa being its core component (figure 1.2). Its layered organiza-

tion is inspired by the widely adopted zone models[126], medallion architecture[127], in

particular and is composed of:

• the landing (raw) zone aimed at ingestion of sequencing data files containing short

reads from the sequencing instruments (Bronze layer),

• the processing zone where alignment and variant calling pipelines are run at scale to

deliver the results of the secondary analysis stored in open data formats like ADAM

and ORC or DeltaLake (Silver layer),

• the exploratory and reporting zone that enables researchers to perform population

studies using data science techniques as well as run ad hoc queries for further variant

analysis (Gold layer).

To ensure cloud-agnostic architecture of the Genomic Data Lakehouse, it is deployed

in a containerized way on the Kubernetes platform and cloud object storage systems that

are natively supported by the Apache Spark engine. Such an approach also guarantees

cost efficiency and, at the same time, high independent scalability of both storage and

computing layers. Security follows recommended[19] hierarchy of system level permissions

including: platform-level admin roles (i), the project-level admin roles (ii) and project-

level user roles (iii) governed by the data access privileges and the data access needs.

Figure 1.2 visualizes dependencies between the published manuscripts, in which I

proposed several novel approaches that resolve challenges stated above, in particular,

methods presented in my research papers:

• [P1] is one of the first studies to assess the applicability of Apache Spark to HTS

studies and confronting its performance with Hadoop MapReduce execution engine,

• [P5, P6] addresses the problem of non-satisfactory performance of the distributed

depth of coverage and pileup algorithms when compared to the single node coun-

terparts,

21

Figure 1.2: Genomic Data Lakehouse architecture overview, bold rounded

rectangles symbolize Author’s main contributions presented in this Disserta-

tion.

• [P4] facilitates large-scale genomic ranges intersections by proposing optimized dis-

tributed join strategies,

• [P2] argues utility of genomic data warehouses for population scale studies,

• [P3] investigates areas of applicability and potential performance improvements of

distributed machine learning algorithms in Apache Spark large scale genomic stud-

ies.

22

1.5 Aim and Research Theses

The main goal of this Dissertation was to design new distributed and scalable methods

and algorithms that would help to improve the efficiency of the secondary and tertiary

stages in the HTS data analysis, and also to contribute to the development of the Genomic

Data Lakehouse paradigm.

This Dissertation develops and proves three main research theses:

I Application of the novel distributed computing engines can substantially improve the

performance of interactive alignment files ad hoc analyses in a Data Lake environment

([P1]).

II Columnar data formats together with the modern SQL query engines and appropriate

data modeling techniques enable building a distributed data warehousing platform

that would outperform the existing single-node alternative solutions and can be used

for population-scale studies ([P2]).

III Building a scalable Genomic Data Lakehouse requires distributed algorithms designed

and implemented for common bioinformatics operations such as interval intersections,

calculation of depth of coverage, pileup summary and machine learning pipelines

([P3, P4, P5, P6]).

1.6 Publications constituting this Dissertation

This Dissertation presents the methods, architectures and algorithms that were previously

published in peer-reviewed journals. It is based on a compilation of six research papers

coauthored by the Author of this thesis:

[P1] M.S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and

M.J. Okoniewski. SparkSeq: Fast, scalable and cloud-ready tool for the interactive ge-

nomic data analysis with nucleotide precision. Bioinformatics, 30(18), 2014, MNiSW

list: 200 pts, Impact factor: 4.981, Contribution: 55%, Description of the

contribution: Conceptualization and formal analysis of the algorithms, implementa-

tion, preparing and running performance tests, performance tuning, manuscript writ-

ing.

23

[P2] M.S. Wiewiórka, D.P. Wysakowicz, M.J. Okoniewski, and T. Gambin. Bench-

marking distributed data warehouse solutions for storing genomic variant information.

Database : the journal of biological databases and curation, 2017, 2017, MNiSW list:

100 pts, Impact factor: 2.627, Contribution: 65%, Description of the con-

tribution: Conceptualization, implementation, preparing and running performance

tests, manuscript writing.

[P3] Anastasiia Hryhorzhevska, Marek Wiewiórka, Michał Okoniewski, and Tomasz

Gambin. Scalable Framework for the Analysis of Population Structure Using the Next

Generation Sequencing Data. In Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 10352 LNAI, pages 471–480. 2017, MNiSW list: 20 pts, Impact factor:

–, Contribution: 20%, Description of the contribution: Conceptualization,

preparing infrastructure for performance tests, manuscript writing.

[P4] Marek Wiewiórka, Anna Leśniewska, Agnieszka Szmurło, Kacper Stępień, Ma-

teusz Borowiak, Michał Okoniewski, and Tomasz Gambin. SeQuiLa: an elastic, fast and

scalable SQL-oriented solution for processing and querying genomic intervals. Bioin-

formatics, 35(12):2156–2158, June 2019, MNiSW list: 200 pts, Impact factor:

4.531, Contribution: 51%, Description of the contribution: Conceptualiza-

tion and formal analysis of the algorithms, implementation, preparing and running

performance tests, performance tuning, manuscript writing.

[P5] Marek Wiewiórka, Agnieszka Szmurło, Wiktor Kuśmirek, and Tomasz Gambin.

SeQuiLa-cov: A fast and scalable library for depth of coverage calculations. Giga-

Science, 8(8), August 2019, MNiSW list: 200 pts, Impact factor: 5.71, Con-

tribution: 45%, Description of the contribution: Conceptualization and formal

analysis of the algorithms, implementation, preparing and running performance tests,

manuscript writing.

[P6] Marek Wiewiórka, Agnieszka Szmurło, Paweł Stankiewicz, and Tomasz Gambin.

Cloud-native distributed genomic pileup operations. Bioinformatics, December 2022,

MNiSW list: 200 pts, Impact factor: 6.931, Contribution: 45%, Descrip-

tion of the contribution: Conceptualization and formal analysis of the algorithms,

24

implementation, preparing and running performance tests, preparing IaC modules for

cloud resource provisioning, performance tuning, manuscript writing.

25

26

CHAPTER 2

Main scientific contribution of the Author of the Dissertation

This chapter summarizes my main scientific contributions that fall into three categories:

(i) evaluation of the distributed processing model for genomic studies, (ii) applicability of

the data warehousing architecture for genomic variant analyses and (iii) design and imple-

mentation of the distributed methods for the development of the genomic data lakehouse

concept.

My first three research papers[P1, P2, P3] were devoted to identifying the oppor-

tunities and challenges of introducing of the distributed computing model to genomic

studies. In the three latter ones[P4, P5, P6], drawing on implementation experience from

the initial studies, I proposed novel computational methods and algorithms to address

some of the recognized shortcomings. Together, they gave rise to the SeQuiLa1 project

that was launched at the Institute of Computer Science at the Warsaw University of

Technology in the late 2017. I have been one of its main contributors ever since.

SeQuiLa is a truly interdisciplinary project drawing on many fields of knowledge such

as query optimization theory[128], distributed computing, bioinformatics and genomics.

The ultimate goal of SeQuiLa is to provide researchers with an open, scalable and easy

to use distributed computing environment for genomic studies at population scale. The

project is still under active development and it has been gradually extended with new
1https://biodatageeks.github.io/sequila/

27

https://biodatageeks.github.io/sequila/

features.

As its initiator, main developer and maintainer, my contribution to the SeQuiLa

project consists of designing and implementing several distributed algorithms that op-

timize common time-consuming bioinformatics operations such as: range joins, depth of

coverage and pileup calculations. The importance of these algorithms is briefly summa-

rized below.

Intersection of genomic intervals is one of the most common operation utilized at

various stages of variant calling and annotation pipelines. It is also a crucial element

of most ad hoc bioinformatics analyses. Its aim is to determine the overlap between

different intervals defined, for instance, as a set of sequencing reads or selected genomic

features. This kind of operations is supported by several available software tools, including

featureCounts[129], samtools[68] and GenomicRanges[130]. However popular and easy to

use, they are still subject to performance limitations that make genome-wide analyses

infeasible.

Pileup format was designed to provide the evidence of single-nucleotide variants or

short insertions/deletions at given genomic positions. It is commonly used as an entry

point to the well-established variant calling pipelines[131]. Further, it is also utilized in

novel variant detection frameworks based on the neural networks[132] or on other methods

like the binomial model, partial-order alignment, and de Bruijn graph local assembly[133]

in the case of fast variant calling. Coverage position summary is also used for identification

of somatic mutations and copy number variation[134].

Ultimately, a substantial effort has been put into making SeQuiLa a cloud-ready so-

lution and developing additional mechanisms, following IaC best practices, for automatic

deployments in all cloud environments.

2.1 Genomic data distributed processing in data lakes

[P1]

Publication [P1] with over 130 citations2 at the time of preparing this Dissertation, along-

side with the ADAM project that was published almost simultaneously, is among the

earliest and the most highly cited studies in which using the Apache Spark engine was
2According to Google Scholar, https://scholar.google.pl/scholar?q=sparkseq

28

https://scholar.google.pl/scholar?q=sparkseq

proposed for the HTS data analysis.

The proof-of-concept solution SparkSeq, that was developed for the purpose of the

evaluation presented in this manuscript, allowed end users to perform, using Apache

Spark RDD API, various types of basic analyses, such as reads counting, filtering and

viewing from the BAM files stored on HDFS using the Hadoop-BAM[106] library. This

study provided the following insights:

• SparkSeq methods implementation proved to be more than 9x faster then analogous

available in SeqPig (MapReduce-based) in all 4 benchmarks,

• single-thread performance was tested against shell scripts using samtools

and AWK[135],

• Apache Spark caching strategies, serialization and compression options were eval-

uated in terms of CPU-memory trade-offs and performance benefits for multi-pass

algorithms,

• development of novel algorithms is a lot easier than with the low-level MapReduce

approach.

Apache Spark evaluation confirmed its applicability to genomics analyses and, although

this study did not result in a production-ready solution, it certainly set the foundation

for further projects including SeQuiLa.

2.2 Genomic data querying in distributed data ware-

houses [P2]

Studies presented in the manuscript [P2] aimed at providing data architects and bioin-

formaticians with guidance as well as benchmark techniques that would help them assess

performance of the designed distributed data warehousing platform for storing genomic

variant information at population scale. This kind of solutions is targeted especially

at large-scale, national sequencing initiatives, such as the already mentioned Genomics

England’s ’100 000 Genomes Project’.

I proposed to use a novel testing methodology the basic idea of which was to prepare

a reference star schema-based[136] data model (including additional materialized views[137]

29

implementing one-big table (OBT) optimization[138] for the elimination of distributed

joins fact-dimensions tables) together with a data simulator and a set of predefined SQL

queries that correspond with typical analyses such as calculating allele frequencies with

geographical breakdowns, cumulative frequencies per genomic interval or various variant

statistics across samples. The data generator component in order to preserve real-world

statistical distributions of the variants combined information available in two databases,

namely annotation details from dbNSFP[139] with allele frequencies from ExAC[140].

The benchmark framework I put forward was applied to evaluate performance of

a number of distributed query engines, including Apache Hive, Prestodb[141], Apache

Spark, Apache Impala[142]. In addition, their efficiency was compared against the single-

node analytical database MonetDB[143] and the distributed On-Line Analytical Process-

ing (OLAP) cube solution - Apache Kylin[144].

From this benchmark I was able to identify several key findings:

• Apache Spark (version 2.x) proved to be the most general purpose tool in the study,

suitable for computationally intensive data processing but also applicable when

interactivity is of great importance,

• both open columnar-oriented file formats evaluated – ORC and Parquet – offer great

performance (although at the time of writing that manuscript Apache Spark did not

support a native vectorized reader3, hence it underperformed in a number of test

queries over tables stored in ORC),

• distributed joins minimization (or total elimination using OBT optimization) can

substantially reduce query execution time.

All of the above conclusions were important from the perspective of my further work on

adjusting Apache Spark for distributed genomic analyses.
3This feature was added in version 2.3.0: https://spark.apache.org/docs/2.3.0/

sql-programming-guide.html#orc-files

30

https://spark.apache.org/docs/2.3.0/sql-programming-guide.html##orc-files
https://spark.apache.org/docs/2.3.0/sql-programming-guide.html##orc-files

2.3 Genomic Data Lakehouse

2.3.1 Distributed machine learning framework for genomic data[P3]

Publication [P3] presented a proof-of-concept tool for a distributed analysis of population

structure using the ADAM project and the Apache Spark builtin machine learning library

– MLlib[38]. The pipeline included a few machine learning methods for dimensionality

reduction, clustering or classification such as: Principal Component Analysis (PCA), K-

means, Gaussian Mixture, Support Vector Machine (SVM), Random Forests, and Decision

Trees.

In this work, I contributed to the design and analysis of the proposed solution that

confirmed a great applicability of distributed computing for feature pre-processing and

engineering steps, even for studies involving more than a hundred thousand samples.

On the other hand, experiments showed clearly that built-in implementations of dimen-

sionality reduction and classification methods are not capable of handling genome-wide

datasets, i.e. with samples represented as rows and millions of columns corresponding to

the number of genomic variants under study.

This led to the conclusion that there was also a need for the specialized methods

like the one proposed in VariantSpark[100] or REGENIE[145] algorithms, the distributed

version of which was implemented recently in the Glow[99] project.

2.3.2 Scalable range joins[P4]

Range join (also known as region join, interval query) is an operation aiming at find-

ing overlaps between datasets containing records with keys in a form of genomic in-

tervals. A genomic interval r can be defined by the two coordinates, start and end,

on a given chromosome, i.e. r = (r.chrom, r.start, r.end). Given a set of N intervals,

R = {r1, r2, . . . , rN}, for N ≫ 1 and a query interval q, finding the subset S of R that

intersects q can be represented as[146]:

S(q) = {r ∈ R|(r.chrom = q.chrom ∧ r.start ≤ q.end ∧ r.end ≥ q.start)} (2.1)

That, in turn would also correspond to the inner join operation expressed in SQL as

follows:

31

SELECT * FROM r JOIN q ON

q.chrom=r.chrom AND r.end >= q.start AND r.start <= q.end

There have been several efficient data structures proposed that optimize this operation

in the case of a single-node execution model like: Augmented Interval Tree (AIT)[147],

Nested Containment List (NCList)[148], Augmented Interval List (AIList)[146], Interval

Array (IA)[149], Implicit Interval Tree (IIT)[14] or Implicit Interval Tree with Interpola-

tion Index (IITII)[150]. Distributed join implementations have been so far pursuing either

of the two strategies: broadcast or shuflle-based[149].

In particular, the ADAM project offers two algorithms: a shuffle-based (sort-merge)

and a shuffle-free (broadcasting smaller dataset as an IA-like data structure). Nonethe-

less, the authors of the GenAp manuscript confirmed that the modified, two-stage AIT

broadcast algorithm (i.e. constructing an interval forest storing only rows identifiers in-

stead of whole records) can be both substantially faster than sort-merge approach and,

at the same time, able to address the problem of joining two relatively large datasets. In

[P4] I proposed the following four main enhancements to the existing approaches:

• novel optimized, broadcast AIT-based join method (with time complexity O(log n)),

• novel rule-based mechanism for Apache Spark Catalyst that, depending on the es-

timated broadcast structure size, decides which join algorithm to use,

• fully declarative and ANSI SQL compliant interface that enables direct querying

not only genomic datasets stored in ADAM but also BAM, CRAM and VCF files

as well arbitrary DataFrames,

• the overall performance of the implemented algorithm was 1.7-4.2x better than other

distributed solutions.

The broadcast method was generalized after the manuscript publication into the plug-

gable mechanism that enables specifying in the runtime other data structure designated

for broadcasting, such as AIList, NCList or IITII . This was designed to mitigate the prob-

lem of serializing large interval tree structures. However, unlike [149] that suggested using

interval array structure (that guarantees only the best case Θ(log n) because of additional

linear search needed) we are able to preserve the time complexities of the underlying

interval data structures.

32

2.3.3 Scalable depth of coverage and pileup calculations[P5],

[P6]

Given a reference genome sequence S of symbols from the alphabet Σ = {A, C, G, T} (the

symbols in Σ represent the four nucleotides adenine, cytosine, guanine, and thymine), a

set of all corresponding genomic positions G and a set of reads mapped to this reference

genome R, then for each g ∈ G we define a subset Rg ⊆ R denoting sequenced fragments

(reads) obtained from a sequencing experiment that cover a genomic position g as:

Rg = {r ∈ R|(g.chrom = r.chrom ∧ g.pos ≥ r.start ∧ g.pos ≤ r.end)} (2.2)

a depth of coverage function can be represented as:

C(g) = |Rg| (2.3)

where |Rg| is the cardinality of a set Rg, i.e., the number of sequencing reads that overlap

with the position g.

Equally, a pileup function in its simplest form can be defined as:

P (g) = {(a1, . . . , an)|r ∈ Rg ∧ n ∈ {1, . . . , |Rg|} ∧ an = rn.seq(g)} (2.4)

where r.seq denotes a sequence from the same alphabet as S and r.seq(g) is an element in

this sequence corresponding to a genomic position g in a read r. It is also straightforward

to observe that:

C(g) = |P (g)| = |(a1, . . . , an)| = |Rg| (2.5)

and also that given a genome sequence S and C(g) the reverse operation (i.e. deriving

P (g) from C(g)) is possible if all the reads covering a genomic position g have the same

symbol in their sequences at respective positions corresponding the genomic position g,

i.e.:

P (g) =

(an)n∈{1,...,C(g)},an=Sg if ∀i ∈ {1, . . . , C(g)}ri.seq(g) = Sg

(rn.seq(g))n∈{1,...,C(g)}|r ∈ Rg otherwise
(2.6)

In either case additional filtering conditions on sequenced fragments can be imposed, e.g.

basing on various quality metrics of a read or its flags[68]. Figure 2.1 presents calculation

of depth of coverage and pileup. Optionally, a pileup summary 4 may include PHRED

33

Figure 2.1: Example of depth of coverage and pileup calculations. Values of C(g)

and P (g) functions are presented for the genomic position g and read fragments

marked in red. Pileup for a genomic position g − 1 (marked in green) depicts

how the value P (g − 1) can be derived from the reference sequence S (as Sg−1)

and the value of depth of coverage C(g −1) in the case when all the reads have a

symbol Sg−1 at a genomic position corresponding to g − 1. Consequently, all the

elements of P (g − 1) sequence are equal to Sg−1 and the length of the sequence

equals C(g − 1).

quality scores for each of the base.

The depth of coverage algorithms can be divided into two categories:

• relying on determining the P (g) values for all covered genomic positions and sub-

sequently simply deriving C(g) as the length of each pileup sequence (see equation

2.5). This approach is implemented, among others, in samtools[91], GATK[15] or

sambamba[93],

• directly calculating C(g) values using start and end positions of each read alignment

for incrementing or decrementing interval counters. This event-based method has

been initially proposed in bedtools[151] and more recently enhanced in mosdepth[152].

Neither of these utilities support parallel or distributed computation model – in the
4https://en.wikipedia.org/wiki/Pileup_format

34

https://en.wikipedia.org/wiki/Pileup_format

case of mosdepth input file (i.e. BAM or CRAM) processing (BGZF blocks decom-

pression) can be parallelized.

In [P5] I proposed a novel distributed method for calculating depth of coverage that

generalizes the event-based approach. The scientific contribution can be summarized as

follows:

• implementation of Apache Spark Catalyst custom execution strategy that handles

depth of coverage calculations for both DataFrame and SQL APIs,

• an extension to the existing ANSI SQL compliant interface in a form of a table-

valued function5,

• performance results confirmed that this algorithm is both scalable and up to two

orders of magnitude faster than the existing single-threaded implementations and

around 60x faster than the state-of-the art multi-threaded ones. It is also the fastest

implementation among the tools supporting the distributed computing model.

In [P6], on the other hand, I enhanced the event-based algorithm to enable efficient

distributed pileup computations. It is based on the observation expressed in equation 2.6.

The key novelties introduced by this method are:

• a new algorithm that offers a drastically reduction of the computationally inten-

sive read processing needed for materialization of the full pileup structure. It was

possible thanks to the observation that, in most cases the majority of bases in the

aligned sequencing reads are concordant with the reference sequence. This is why it

is sufficient to use the information stored in Compact Idiosyncratic Gapped Align-

ment Report (CIGAR) strings, representing spliced alignment operations and MD

tags6, encoding mismatched and deleted reference bases to construct a lean pileup

structure holding only alternative alleles counts. This, in turn with the event-based

coverage results can be efficiently used to render the full pileup summary,

• a new data partitions coalescing mechanism, which guarantees proper handling of

reads overlapping more than one partition without the need of data shuffling,
5https://biodatageeks.github.io/sequila/docs/api/sql/#sequila.SequilaSession.

coverage
6https://samtools.github.io/hts-specs/SAMtags.pdf

35

https://biodatageeks.github.io/sequila/docs/api/sql/##sequila.SequilaSession.coverage
https://biodatageeks.github.io/sequila/docs/api/sql/##sequila.SequilaSession.coverage
https://samtools.github.io/hts-specs/SAMtags.pdf

• a rewritten and optimized distributed event-based algorithm for depth of coverage

calculations that enables single-pass over input data and lowers memory require-

ments since no intermediate data caching is required,

• implementation of Apache Spark Catalyst custom execution strategy that handles

depth of coverage calculations for both DataFrame and SQL APIs,

• an extension to the existing ANSI SQL compliant interface in a form of a table-

valued function7.

The performance results confirmed that this approach is by far the fastest pileup imple-

mentation in both single-node and distributed benchmarks.

Finally, in this manuscript, I have also emphasized the need of IaC[153] approach

for cloud resources provisioning as crucial for ensuring portability and reproducibility of

the SeQuiLa-based data processing workflows. There is still relatively very few publica-

tions offering ready-to-use modules and recipes for bioinformatics tools deployments in

the cloud enviroments, and at the same time promoting Development, Security, Opera-

tions (DevSecOps)[154] principles. This approach may bring a number of benefits to the

community, including:

• more secure cloud computing platforms provisioned using reviewed and opinionated

IaC modules that additionally can be subject to automatic static code analysis tools

(linters)[155],

• easy way of implementing FinOps[156] best practices for optimizing cloud spending

as well as enabling better cost control e.g. through automatic resource labeling[157],

• unified and predictable change management process for application and infrastruc-

ture code.

In addition, a set of IaC modules8 for running SeQuiLa in all three main cloud platforms

has been released together with the manuscript.

7https://biodatageeks.github.io/sequila/docs/api/sql/#sequila.SequilaSession.pileup
8https://github.com/biodatageeks/sequila-cloud-recipes

36

https://biodatageeks.github.io/sequila/docs/api/sql/##sequila.SequilaSession.pileup
https://github.com/biodatageeks/sequila-cloud-recipes

CHAPTER 3

Scientific achievements

The series of publications presented in this Dissertation is by far my original contribution

of utmost importance. However, my scientific work also resulted in other notable achieve-

ments that are briefly summarised in the sections below. They include Open Source

projects, research grants, other publications, conference appearances and a list of awards.

3.1 Source code repositories

The following git repositories have been created for the purpose of my research:

• [T1] – the main repository of the SeQuiLa project,

• [T2] – the Python PyPI package for SeQuiLa,

• [T3] – a set of Terraform[158] modules for the SeQuiLa cloud deployments,

• [T4] – the auxiliary source code for the benchmark methodology of distributed

genomic data warehouses presented in[P2],

• [T5] – the source code for the proof-of-concept framework for the distributed

analyses of the population structure presented in[P3],

• [T6] – the proof-of-concept SparkSeq solution for the distributed processing and

analyses of the alignment files presented in [P1].

37

Git repositories [T1, T2, T2] are related to three SeQuiLa publications[P4, P5, P6].

3.2 Own research grants

• [O1] Sciex Fellowship no 12.289 – System „CLANG” — ClinicaL ANalysis in Ge-

nomics A Dedicated Application for Translational Biomedical Research - University

of Zurich (07/2013-06/2014), Budget: 50,000 CHF, Position: Principal Investi-

gator

• [O2] Microsoft Azure for Research - Towards an interactive secondary analysis of

RNA sequencing data service in Widows Azure cloud with Apache Spark framework,

01/2014-01/2015, Budget: 40,000 USD, Position: Principal Investigator [159]

• [O3] National Science Centre Preludium 2014/13/N/ST6/01843 – Methods and

algorithms of discovering novel phenomena in genomes and transcriptomes with the

statistical analysis of nucleotide precision data from next generation sequencers,

03/2015-09/2018, Budget: 145,580 PLN, Position: Principal Investigator

3.3 Participation in research grants

• [O4] National Science Centre Opus 2014/13/B/NZ2/01248 – PerM-Cloud, Algo-

rithms and methods of processing big genomic data repositories in computing cloud

environment towards the personalized medicine, 03/2015-09/2018

• [O5] Polish budget funds for science Iuventus Plus IP2015/019874 – Simultaneous

analysis of single nucleotide and structural variants from whole exome or targeted

sequencing, 10/2016-10/2019

3.4 Other research publications

• [O6] Wiktor Kuśmirek, Agnieszka Szmurło, Marek Wiewiórka, Robert Nowak, and

Tomasz Gambin. Comparison of kNN and k-means optimization methods of ref-

erence set selection for improved CNV callers performance. BMC Bioinformatics,

38

20(1):266, December 2019, Description: In this work apart from the main opti-

mization challenge, there has been developed a prototype accelerated version of the

tooling using a distributed depth of coverage computation method.

3.5 Book chapters

• [O7] Marek Wiewiorka, Alicja Szabelska, Michal J. Okoniewski, Analysis of Am-

pliSeq RNA-Sequencing Enrichment Panels, Pattern Recognition and Machine Intel-

ligence: 6th International Conference, PReMI 2015, Warsaw, Poland, June 30-July

3, 2015[160]

• [O8] Monika Szczerba, Marek Wiewiórka, Michał J. Okoniewski, Hneryk Rybiński,

Scalable Cloud-Based Data Analysis Software Systems for Big Data from Next

Generation Sequencing. In Nathalie Japkowicz and Jerzy Stefanowski, Big Data

Analysis: New Algorithms for a New Society, volume 16, pages 263–283.Springer

International Publishing, Cham, 2016[161]

• [O9] Michał J. Okoniewski, Rafał Płoski, Marek Wiewiórka, Urszula Demkow, Fu-

ture Directions. In Clinical Applications for Next-Generation Sequencing, pages

281–294, Elsevier, 2016[162]

3.6 Conference talks

• [O10] Analysis of large genomic datasets with Big Bata tools, Big Data Technology

Warsaw Summit, Warsaw, 2017

• [O11] Extending Apache Spark Catalyst optimizer, Data science summit, Warsaw,

2018

• [O12] Towards next generation, cloud-ready and open-source big data discovery

platform, Big Data Technology Warsaw Summit, Warsaw, 2019

• [O13] Towards Enterprise Grade Data Discovery and Data Lineage, Big Data Tech-

nology Warsaw Summit, Warsaw, 2020

39

• [O14] MLOps implemented - how we combine the cloud open-source to boost data

scientists work, Nordic Data Science and Machine Learning Summit, online, 2021

• [O15] From first contact to a full charge...How we built a Modern Data Platform

in 4 months for a FinTech scale-up, DataMass, Gdańsk, 2022

• [O16] Genomic Data Lakehouse Architecture, 3rd Symposium of Genomics Plat-

form at the Warsaw University of Technology, 2023

3.7 Conference posters

• [O17] Marek Wiewiórka, Dawid P. Wysakowicz, Michał J. Okoniewski , Tomasz

Gambin, Benchmarking distributed data warehouse solutions for storing genomic

variant information, The American Society of Human Genetics Annual Meeting

2016

• [O18] Marek Wiewiórka, Wiktor Kuśmirek, Michał J. Okoniewski, Tomasz Gam-

bin, Automated parameter tuning for more accurate CNV calling in WES/WGS

data, The American Society of Human Genetics Annual Meeting 2017

• [O19] Marek Wiewiórka, Agnieszka Szmurło, Tomasz Gambin, SeQuiLa: an elastic,

fast and scalable SQL-oriented platform for processing and analyzing genomic data,

The American Society of Human Genetics Annual Meeting 2018

• [O20] Marek Wiewiórka, Agnieszka Szmurło, Tomasz Gambin, High-level opti-

mizations over query engines ensemble: Accelerating distributed genomic data sci-

ence,The American Society of Human Genetics Annual Meeting 2019

3.8 Prizes and awards

• [O21] TransFormation.doc program winner (POIG.01.01.03-00-001/08) – Soft Skills

and Entrepreneurship training at University of Lund, 11/2015

• [O22] Warsaw University of Technology Best paper award 2020 winner[163] for

the manuscript: SeQuiLa: an elastic, fast and scalable SQL-oriented solution for

processing and querying genomic intervals ([P4])

40

• [O23] Warsaw University of Technology Best paper award 2020 winner[163] for

the manuscript: SeQuiLa-cov: A fast and scalable library for depth of coverage

calculations ([P5])

41

42

CHAPTER 4

Conclusions and future work

This Dissertation presents several novel distributed algorithms and organization of the

computational efforts for scalable processing of HTS data in the context of cloud data

platform architectures. Throughout the thesis, I aimed at outlining both multidimensional

challenges concerning design and implementation of solutions for genomic analyses at

scale, as well as ideas and concepts to address them.

In my opinion, on one hand, a comprehensive approach that combines theoretical

computer science perspective and real-world computing environment characteristics is

absolutely crucial for developing high-performance systems. In the case of large-scale dis-

tributed applications, aspects such as inter-node communication, data compression, and

I/O operations latency, may be equally important as theoretical time complexities and, as

a whole, decisive for success of a given method. This is why I put a lot of effort into rig-

orous performance evaluation of all the presented algorithms, each time comparing them

with the state-of-the-art single-node implementations. On the other hand, user-experience

is something that cannot be neglected. Providing bioinformaticians and data scientists

with programming interfaces that, within their communities, are considered to be lingua

franca like SQL or Python languages, is in fact a critical factor for a software adoption. Fi-

nally, platforms maintainability together with portability and reproducibility of genomic

data analyses are equally important. This is especially desirable in the cloud computing

43

context where, from DevSecOps and FinOps perspectives, resources provisioning should

by fully automated to enable easy and secure environment setup.

The publications that constitute this Dissertation not only discuss extensively all the

research theses presented in section 1.5 but also sketch the architecture of the Apache

Spark-based Genomic Data Lakehouse using the SeQuiLa project. Nonetheless, it is

worth summarizing the key research contributions of the Author:

• studies on applicability of Apache Spark framework for genomic analyses and im-

plementation of the proof-of-concept tool – SparkSeq,

• proposing a benchmark methodology of evaluation and comparison of the distributed

SQL query engines for storing and analysing variant information,

• design and implementation of three novel distributed algorithms, important from

the perspective of genomics analyses, for the purpose of: finding genomic intervals

intersections, computing depth of coverage and obtaining genomic pileup summary,

• being the initiator, main designer and developer of the SeQuiLa project,

• promoting IaC and DevSecOps principles for reproducible, more secure and more

cost efficient genomic studies in the cloud.

The main focus of this Dissertation has been on the scalable and distributed computing

methods using CPUs running only within Java Virtual Machine. However, there are at

least two very promising extensions to this approach that are definitely worth being

explored further: (i) heterogeneous computing with the intention to offload some of the

most computationally intensive tasks over Java Native Interface or a similar interface

to FPGAs[164] or GPUs[165, 166], (ii) a project inspired by Photon[53] and Velox[54]

providing a similar native acceleration for genomics operations.

Lastly, one cannot forget about the data governance[167] aspects of genomic studies,

especially population-scale, where automatic cataloging, security and robust data sharing

mechanisms are extremely crucial for popularizing cloud computing genomic platforms.

44

CHAPTER 5

Bibliography

45

Original Author’s Contribution

[P1] M.S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and

M.J. Okoniewski. SparkSeq: Fast, scalable and cloud-ready tool for the interactive

genomic data analysis with nucleotide precision. Bioinformatics, 30(18), 2014. ISSN

14602059. doi: 10.1093/bioinformatics/btu343.

[P2] M.S. Wiewiórka, D.P. Wysakowicz, M.J. Okoniewski, and T. Gambin. Benchmark-

ing distributed data warehouse solutions for storing genomic variant information.

Database : the journal of biological databases and curation, 2017, 2017. ISSN

17580463. doi: 10.1093/database/bax049.

[P3] Anastasiia Hryhorzhevska, Marek Wiewiórka, Michał Okoniewski, and Tomasz

Gambin. Scalable Framework for the Analysis of Population Structure Using the

Next Generation Sequencing Data. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), volume 10352 LNAI, pages 471–480. 2017. doi: 10.1007/978-3-319-60438-1_46.

URL http://link.springer.com/10.1007/978-3-319-60438-1_46.

[P4] Marek Wiewiórka, Anna Leśniewska, Agnieszka Szmurło, Kacper Stępień, Ma-

teusz Borowiak, Michał Okoniewski, and Tomasz Gambin. SeQuiLa: an elastic,

fast and scalable SQL-oriented solution for processing and querying genomic in-

tervals. Bioinformatics, 35(12):2156–2158, June 2019. ISSN 1367-4803. doi: 10.

46

http://link.springer.com/10.1007/978-3-319-60438-1_46

1093/bioinformatics/bty940. URL https://academic.oup.com/bioinformatics/

article/35/12/2156/5182295.

[P5] Marek Wiewiórka, Agnieszka Szmurło, Wiktor Kuśmirek, and Tomasz Gambin.

SeQuiLa-cov: A fast and scalable library for depth of coverage calculations.

GigaScience, 8(8), August 2019. ISSN 2047-217X. doi: 10.1093/gigascience/

giz094. URL https://academic.oup.com/gigascience/article/doi/10.1093/

gigascience/giz094/5543653.

[P6] Marek Wiewiórka, Agnieszka Szmurło, Paweł Stankiewicz, and Tomasz Gam-

bin. Cloud-native distributed genomic pileup operations. Bioinformat-

ics, December 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/

btac804. URL https://academic.oup.com/bioinformatics/advance-article/

doi/10.1093/bioinformatics/btac804/6900922.

47

https://academic.oup.com/bioinformatics/article/35/12/2156/5182295
https://academic.oup.com/bioinformatics/article/35/12/2156/5182295
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giz094/5543653
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giz094/5543653
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac804/6900922
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac804/6900922

Source code repositories

[T1] biodatageeks/sequila:1.1.0, January 2023. URL https://zenodo.org/record/

7581429.

[T2] biodatageeks/pysequila:0.4.1, January 2023. URL https://zenodo.org/record/

7581427.

[T3] biodatageeks/sequila-cloud-recipes:0.10.0, January 2023. URL https://zenodo.

org/record/7581435.

[T4] biodatageeks/variantsdwh: Paper release, March 2023. URL https://zenodo.org/

record/7699817.

[T5] biodatageeks/popgen: Paper release, March 2023. URL https://zenodo.org/

record/7699874.

[T6] biodatageeks/sparkseq: Paper release, March 2023. URL https://zenodo.org/

record/7699968.

48

https://zenodo.org/record/7581429
https://zenodo.org/record/7581429
https://zenodo.org/record/7581427
https://zenodo.org/record/7581427
https://zenodo.org/record/7581435
https://zenodo.org/record/7581435
https://zenodo.org/record/7699817
https://zenodo.org/record/7699817
https://zenodo.org/record/7699874
https://zenodo.org/record/7699874
https://zenodo.org/record/7699968
https://zenodo.org/record/7699968

References

[1] J. D. Watson and F. H. C. Crick. Molecular Structure of Nucleic Acids: A Structure

for Deoxyribose Nucleic Acid. Nature, 171(4356):737–738, April 1953. ISSN 0028-

0836, 1476-4687. doi: 10.1038/171737a0. URL https://www.nature.com/articles/

171737a0.

[2] Gaye Lightbody, Valeriia Haberland, Fiona Browne, Laura Taggart, Huiru Zheng,

Eileen Parkes, and Jaine K Blayney. Review of applications of high-throughput

sequencing in personalized medicine: barriers and facilitators of future progress

in research and clinical application. Briefings in Bioinformatics, 20(5):1795–1811,

September 2019. ISSN 1467-5463, 1477-4054. doi: 10.1093/bib/bby051. URL

https://academic.oup.com/bib/article/20/5/1795/5062275.

[3] Sara Goodwin, John D. McPherson, and W. Richard McCombie. Coming of age:

ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17

(6):333–351, June 2016. ISSN 1471-0056, 1471-0064. doi: 10.1038/nrg.2016.49. URL

http://www.nature.com/articles/nrg.2016.49.

[4] Taishan Hu, Nilesh Chitnis, Dimitri Monos, and Anh Dinh. Next-generation se-

quencing technologies: An overview. Human Immunology, 82(11):801–811, Novem-

ber 2021. ISSN 01988859. doi: 10.1016/j.humimm.2021.02.012. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0198885921000628.

[5] Andreas von Bubnoff. Next-Generation Sequencing: The Race Is On. Cell, 132(5):

49

https://www.nature.com/articles/171737a0
https://www.nature.com/articles/171737a0
https://academic.oup.com/bib/article/20/5/1795/5062275
http://www.nature.com/articles/nrg.2016.49
https://linkinghub.elsevier.com/retrieve/pii/S0198885921000628
https://linkinghub.elsevier.com/retrieve/pii/S0198885921000628

721–723, March 2008. ISSN 00928674. doi: 10.1016/j.cell.2008.02.028. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0092867408002766.

[6] Jan Smetana and Petr Brož. National Genome Initiatives in Europe and the United

Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes,

13(3):556, March 2022. ISSN 2073-4425. doi: 10.3390/genes13030556. URL https:

//www.mdpi.com/2073-4425/13/3/556.

[7] Francis S. Collins and Harold Varmus. A New Initiative on Precision Medicine. New

England Journal of Medicine, 372(9):793–795, February 2015. ISSN 0028-4793, 1533-

4406. doi: 10.1056/NEJMp1500523. URL http://www.nejm.org/doi/10.1056/

NEJMp1500523.

[8] Elżbieta Kaja, Adrian Lejman, Dawid Sielski, Mateusz Sypniewski, Tomasz Gambin,

Mateusz Dawidziuk, Tomasz Suchocki, Paweł Golik, Marzena Wojtaszewska, Mag-

dalena Mroczek, Maria Stępień, Joanna Szyda, Karolina Lisiak-Teodorczyk, Filip

Wolbach, Daria Kołodziejska, Katarzyna Ferdyn, Maciej Dąbrowski, Alicja Woźna,

Marcin Żytkiewicz, Anna Bodora-Troińska, Waldemar Elikowski, Zbigniew J. Król,

Artur Zaczyński, Agnieszka Pawlak, Robert Gil, Waldemar Wierzba, Paula Do-

bosz, Katarzyna Zawadzka, Paweł Zawadzki, and Paweł Sztromwasser. The Thou-

sand Polish Genomes—A Database of Polish Variant Allele Frequencies. Interna-

tional Journal of Molecular Sciences, 23(9):4532, April 2022. ISSN 1422-0067. doi:

10.3390/ijms23094532. URL https://www.mdpi.com/1422-0067/23/9/4532.

[9] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang

Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E.

Robinson. Big Data: Astronomical or Genomical? PLOS Biology, 13(7):e1002195,

July 2015. ISSN 1545-7885. doi: 10.1371/journal.pbio.1002195. URL https://dx.

plos.org/10.1371/journal.pbio.1002195.

[10] Michael C Schatz, Ben Langmead, and Steven L Salzberg. Cloud computing and the

DNA data race. Nature Biotechnology, 28(7):691–693, July 2010. ISSN 1087-0156,

1546-1696. doi: 10.1038/nbt0710-691. URL http://www.nature.com/articles/

nbt0710-691.

50

https://linkinghub.elsevier.com/retrieve/pii/S0092867408002766
https://linkinghub.elsevier.com/retrieve/pii/S0092867408002766
https://www.mdpi.com/2073-4425/13/3/556
https://www.mdpi.com/2073-4425/13/3/556
http://www.nejm.org/doi/10.1056/NEJMp1500523
http://www.nejm.org/doi/10.1056/NEJMp1500523
https://www.mdpi.com/1422-0067/23/9/4532
https://dx.plos.org/10.1371/journal.pbio.1002195
https://dx.plos.org/10.1371/journal.pbio.1002195
http://www.nature.com/articles/nbt0710-691
http://www.nature.com/articles/nbt0710-691

[11] John L. Hennessy and David A. Patterson. A new golden age for computer architec-

ture. Communications of the ACM, 62(2):48–60, January 2019. ISSN 0001-0782, 1557-

7317. doi: 10.1145/3282307. URL https://dl.acm.org/doi/10.1145/3282307.

[12] Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, André Schu-

macher, Anthony D Joseph, and David A Patterson. Adam: Genomics formats and

processing patterns for cloud scale computing. University of California, Berkeley

Technical Report, No. UCB/EECS-2013, 207:2013, 2013.

[13] Min Zhao, Qingguo Wang, Quan Wang, Peilin Jia, and Zhongming Zhao.

Computational tools for copy number variation (CNV) detection using next-

generation sequencing data: features and perspectives. BMC Bioinfor-

matics, 14(S11):S1, September 2013. ISSN 1471-2105. doi: 10.1186/

1471-2105-14-S11-S1. URL https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/1471-2105-14-S11-S1.

[14] Heng Li and Jiazhen Rong. Bedtk: finding interval overlap with implicit

interval tree. Bioinformatics, 37(9):1315–1316, June 2021. ISSN 1367-4803.

doi: 10.1093/BIOINFORMATICS/BTAA827. URL https://academic.oup.com/

bioinformatics/article/37/9/1315/5910546. Publisher: Oxford Academic.

[15] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibul-

skis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark

Daly, and Mark A. DePristo. The Genome Analysis Toolkit: A MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Research, 20(9):

1297–1303, September 2010. ISSN 1088-9051. doi: 10.1101/gr.107524.110.

[16] Michael D. Linderman, Davin Chia, Forrest Wallace, and Frank A. Nothaft.

DECA: Scalable XHMM exome copy-number variant calling with ADAM and

Apache Spark. BMC Bioinformatics, 20(1):1–8, October 2019. ISSN 14712105.

doi: 10.1186/S12859-019-3108-7/TABLES/2. URL https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/s12859-019-3108-7. Publisher: BioMed

Central Ltd.

[17] Peter Vaillancourt, Bennett Wineholt, Brandon Barker, Plato Deliyannis, Jackie

Zheng, Akshay Suresh, Adam Brazier, Rich Knepper, and Rich Wolski. Reproducible

51

https://dl.acm.org/doi/10.1145/3282307
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S11-S1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S11-S1
https://academic.oup.com/bioinformatics/article/37/9/1315/5910546
https://academic.oup.com/bioinformatics/article/37/9/1315/5910546
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3108-7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3108-7

and Portable Workflows for Scientific Computing and HPC in the Cloud. In Practice

and Experience in Advanced Research Computing, pages 311–320, New York, NY,

USA, July 2020. ACM. ISBN 978-1-4503-6689-2. doi: 10.1145/3311790.3396659. URL

https://dl.acm.org/doi/10.1145/3311790.3396659.

[18] Carl Boettiger. An introduction to Docker for reproducible research. ACM SIGOPS

Operating Systems Review, 49(1):71–79, January 2015. ISSN 0163-5980. doi: 10.1145/

2723872.2723882. URL https://dl.acm.org/doi/10.1145/2723872.2723882.

[19] Edmon Begoli, Ian Goethert, and Kathryn Knight. A Lakehouse Architecture

for the Management and Analysis of Heterogeneous Data for Biomedical Research

and Mega-biobanks. In 2021 IEEE International Conference on Big Data (Big

Data), pages 4643–4651. IEEE, December 2021. ISBN 978-1-66543-902-2. doi: 10.

1109/BigData52589.2021.9671534. URL https://ieeexplore.ieee.org/document/

9671534/.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, January 2008. ISSN 0001-0782,

1557-7317. doi: 10.1145/1327452.1327492. URL https://dl.acm.org/doi/10.1145/

1327452.1327492.

[21] Tom White. Hadoop: the definitive guide. O’Reilly, Beijing, third edition edition,

2012. ISBN 978-1-4493-1152-0.

[22] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), pages 1–10, Incline Village, NV, USA, May 2010.

IEEE. ISBN 978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496972. URL http://

ieeexplore.ieee.org/document/5496972/.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In

Proceedings of the nineteenth ACM symposium on Operating systems principles, pages

29–43, Bolton Landing NY USA, October 2003. ACM. ISBN 978-1-58113-757-6. doi:

10.1145/945445.945450. URL https://dl.acm.org/doi/10.1145/945445.945450.

[24] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

52

https://dl.acm.org/doi/10.1145/3311790.3396659
https://dl.acm.org/doi/10.1145/2723872.2723882
https://ieeexplore.ieee.org/document/9671534/
https://ieeexplore.ieee.org/document/9671534/
https://dl.acm.org/doi/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
http://ieeexplore.ieee.org/document/5496972/
http://ieeexplore.ieee.org/document/5496972/
https://dl.acm.org/doi/10.1145/945445.945450

Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and

Eric Baldeschwieler. Apache Hadoop YARN: yet another resource negotiator. In Pro-

ceedings of the 4th annual Symposium on Cloud Computing, pages 1–16, Santa Clara

California, October 2013. ACM. ISBN 978-1-4503-2428-1. doi: 10.1145/2523616.

2523633. URL https://dl.acm.org/doi/10.1145/2523616.2523633.

[25] James Dixon. Pentaho, Hadoop, and data lakes, October 2010. URL:

https://jamesdixon. wordpress. com/2010/10/14/pentahohadoop-and-data-lakes,

2010.

[26] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.

Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and

Utkarsh Srivastava. Building a high-level dataflow system on top of Map-Reduce:

the Pig experience. Proceedings of the VLDB Endowment, 2(2):1414–1425, August

2009. ISSN 2150-8097. doi: 10.14778/1687553.1687568. URL https://dl.acm.org/

doi/10.14778/1687553.1687568.

[27] Jeremy Kepner and Hayden Jananthan. Mathematics of big data: Spreadsheets,

databases, matrices, and graphs. MIT Press, 2018.

[28] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, June 1970. ISSN 0001-0782, 1557-7317. doi: 10.1145/

362384.362685. URL https://dl.acm.org/doi/10.1145/362384.362685.

[29] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. Pig latin: a not-so-foreign language for data processing. In Proceedings

of the 2008 ACM SIGMOD international conference on Management of data, pages

1099–1110, Vancouver Canada, June 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.

1145/1376616.1376726. URL https://dl.acm.org/doi/10.1145/1376616.1376726.

[30] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. Hive - a petabyte

scale data warehouse using Hadoop. In 2010 IEEE 26th International Confer-

ence on Data Engineering (ICDE 2010), pages 996–1005, Long Beach, CA, USA,

2010. IEEE. ISBN 978-1-4244-5445-7. doi: 10.1109/ICDE.2010.5447738. URL

http://ieeexplore.ieee.org/document/5447738/.

53

https://dl.acm.org/doi/10.1145/2523616.2523633
https://dl.acm.org/doi/10.14778/1687553.1687568
https://dl.acm.org/doi/10.14778/1687553.1687568
https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/1376616.1376726
http://ieeexplore.ieee.org/document/5447738/

[31] W. H. Inmon. The data warehouse and data mining. Communications of the ACM, 39

(11):49–50, November 1996. ISSN 0001-0782, 1557-7317. doi: 10.1145/240455.240470.

URL https://dl.acm.org/doi/10.1145/240455.240470.

[32] Simone Leo and Gianluigi Zanetti. Pydoop: a Python MapReduce and HDFS

API for Hadoop. In Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing - HPDC ’10, page 819, Chicago, Illinois,

2010. ACM Press. ISBN 978-1-60558-942-8. doi: 10.1145/1851476.1851594. URL

http://portal.acm.org/citation.cfm?doid=1851476.1851594.

[33] Sebastian Bassi. A Primer on Python for Life Science Researchers. PLoS Compu-

tational Biology, 3(11):e199, November 2007. ISSN 1553-7358. doi: 10.1371/journal.

pcbi.0030199. URL https://dx.plos.org/10.1371/journal.pcbi.0030199.

[34] Mengwei Ding, Long Zheng, Yanchao Lu, Li Li, Song Guo, and Minyi Guo. More

convenient more overhead: the performance evaluation of Hadoop streaming. In Pro-

ceedings of the 2011 ACM Symposium on Research in Applied Computation, pages

307–313, Miami Florida, November 2011. ACM. ISBN 978-1-4503-1087-1. doi: 10.

1145/2103380.2103444. URL https://dl.acm.org/doi/10.1145/2103380.2103444.

[35] Ronald C Taylor. An overview of the Hadoop/MapReduce/HBase frame-

work and its current applications in bioinformatics. BMC Bioinformatics, 11

(S12):S1, December 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-11-S12-S1.

URL https://bmcbioinformatics.biomedcentral.com/articles/10.1186/

1471-2105-11-S12-S1.

[36] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In 2nd USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud 10), 2010.

[37] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and

Matei Zaharia. Spark SQL. In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 1383–1394, New York, NY, USA,

May 2015. ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/2723372.2742797. URL

https://dl.acm.org/doi/10.1145/2723372.2742797.

54

https://dl.acm.org/doi/10.1145/240455.240470
http://portal.acm.org/citation.cfm?doid=1851476.1851594
https://dx.plos.org/10.1371/journal.pcbi.0030199
https://dl.acm.org/doi/10.1145/2103380.2103444
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-S12-S1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-S12-S1
https://dl.acm.org/doi/10.1145/2723372.2742797

[38] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin,

Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar.

MLlib: Machine Learning in Apache Spark. 2015. doi: 10.48550/ARXIV.1505.06807.

URL https://arxiv.org/abs/1505.06807. Publisher: arXiv Version Number: 1.

[39] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache

Spark: a unified engine for big data processing. Communications of the ACM, 59

(11):56–65, October 2016. ISSN 0001-0782, 1557-7317. doi: 10.1145/2934664. URL

https://dl.acm.org/doi/10.1145/2934664.

[40] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.

Borg, Omega, and Kubernetes. Communications of the ACM, 59(5):50–57, April 2016.

ISSN 0001-0782, 1557-7317. doi: 10.1145/2890784. URL https://dl.acm.org/doi/

10.1145/2890784.

[41] Diogo Castro, Prasanth Kothuri, Piotr Mrowczynski, Danilo Piparo, and En-

ric Tejedor. Apache Spark usage and deployment models for scientific comput-

ing. EPJ Web of Conferences, 214:07020, September 2019. ISSN 2100-014X. doi:

10.1051/epjconf/201921407020.

[42] Inès Krissaane, Carlos De Niz, Alba Gutiérrez-Sacristán, Gabor Korodi, Nneka Ede,

Ranjay Kumar, Jessica Lyons, Arjun Manrai, Chirag Patel, Isaac Kohane, and Paul

Avillach. Scalability and cost-effectiveness analysis of whole genome-wide association

studies on Google Cloud Platform and Amazon Web Services. Journal of the American

Medical Informatics Association, 27(9):1425–1430, September 2020. ISSN 1067-5027.

doi: 10.1093/jamia/ocaa068.

[43] Dariusz Mrozek, Krzysztof Stępień, Piotr Grzesik, and Bożena Małysiak-Mrozek. A

Large-Scale and Serverless Computational Approach for Improving Quality of NGS

Data Supporting Big Multi-Omics Data Analyses. Frontiers in Genetics, 12:1078,

July 2021. ISSN 16648021. doi: 10.3389/FGENE.2021.699280/BIBTEX. Publisher:

Frontiers Media S.A.

55

https://arxiv.org/abs/1505.06807
https://dl.acm.org/doi/10.1145/2934664
https://dl.acm.org/doi/10.1145/2890784
https://dl.acm.org/doi/10.1145/2890784

[44] Zhenhua Guo, Geoffrey Fox, and Mo Zhou. Investigation of Data Locality in MapRe-

duce. In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012), pages 419–426, Ottawa, Canada, May 2012. IEEE.

ISBN 978-1-4673-1395-7 978-0-7695-4691-9. doi: 10.1109/CCGrid.2012.42. URL

http://ieeexplore.ieee.org/document/6217449/.

[45] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Disk-locality

in datacenter computing considered irrelevant. In Proceedings of the 13th USENIX

conference on hot topics in operating systems, HotOS’13, page 12, USA, 2011. USENIX

Association. URL http://www.usenix.org/events/hotos11/tech/final_files/

Ananthanarayanan.pdf. Number of pages: 1 Place: Napa, California.

[46] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. Lakehouse: a new

generation of open platforms that unify data warehousing and advanced analytics. In

Proceedings of CIDR, 2021.

[47] Ahmed A. Harby and Farhana Zulkernine. From Data Warehouse to Lakehouse:

A Comparative Review. In 2022 IEEE International Conference on Big Data (Big

Data), pages 389–395, Osaka, Japan, December 2022. IEEE. ISBN 978-1-66548-045-

1. doi: 10.1109/BigData55660.2022.10020719. URL https://ieeexplore.ieee.org/

document/10020719/.

[48] Raghu Ramakrishnan, Baskar Sridharan, John R. Douceur, Pavan Kasturi, Balaji

Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu, Spiro

Michaylov, Rogério Ramos, Neil Sharman, Zee Xu, Youssef Barakat, Chris Dou-

glas, Richard Draves, Shrikant S. Naidu, Shankar Shastry, Atul Sikaria, Simon

Sun, and Ramarathnam Venkatesan. Azure Data Lake Store: A Hyperscale Dis-

tributed File Service for Big Data Analytics. In Proceedings of the 2017 ACM In-

ternational Conference on Management of Data, pages 51–63, Chicago Illinois USA,

May 2017. ACM. ISBN 978-1-4503-4197-4. doi: 10.1145/3035918.3056100. URL

https://dl.acm.org/doi/10.1145/3035918.3056100.

[49] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Ama-

zon S3 for science grids: a viable solution? In Proceedings of the 2008 interna-

tional workshop on Data-aware distributed computing, pages 55–64, Boston MA USA,

56

http://ieeexplore.ieee.org/document/6217449/
http://www.usenix.org/events/hotos11/tech/final_files/Ananthanarayanan.pdf
http://www.usenix.org/events/hotos11/tech/final_files/Ananthanarayanan.pdf
https://ieeexplore.ieee.org/document/10020719/
https://ieeexplore.ieee.org/document/10020719/
https://dl.acm.org/doi/10.1145/3035918.3056100

June 2008. ACM. ISBN 978-1-60558-154-5. doi: 10.1145/1383519.1383526. URL

https://dl.acm.org/doi/10.1145/1383519.1383526.

[50] Ekaba Bisong. Google Cloud Storage (GCS). In Building Machine Learning and

Deep Learning Models on Google Cloud Platform, pages 25–33. Apress, Berkeley, CA,

2019. ISBN 978-1-4842-4469-2 978-1-4842-4470-8. doi: 10.1007/978-1-4842-4470-8_4.

URL http://link.springer.com/10.1007/978-1-4842-4470-8_4.

[51] Pramod Singh. Manage Data with PySpark. In Machine Learning with PySpark,

pages 15–37. Apress, Berkeley, CA, 2022. ISBN 978-1-4842-7776-8 978-1-4842-7777-

5. doi: 10.1007/978-1-4842-7777-5_2. URL https://link.springer.com/10.1007/

978-1-4842-7777-5_2.

[52] Adam Morton. Developing Applications in Snowflake. In Mastering Snowflake So-

lutions, pages 201–219. Apress, Berkeley, CA, 2022. ISBN 978-1-4842-8028-7 978-1-

4842-8029-4. doi: 10.1007/978-1-4842-8029-4_10. URL https://link.springer.

com/10.1007/978-1-4842-8029-4_10.

[53] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David

Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind

Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar,

Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom Van Bussel, Herman

Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. Photon: A Fast Query

Engine for Lakehouse Systems. Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 2326–2339, June 2022. ISSN 07308078. doi: 10.

1145/3514221.3526054. URL https://dl.acm.org/doi/10.1145/3514221.3526054.

Publisher: Association for Computing Machinery ISBN: 9781450392495.

[54] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Kr-

ishna Pai, Wei He, and Biswapesh Chattopadhyay. Velox. Proceedings of the VLDB

Endowment, 15(12):3372–3384, August 2022. ISSN 21508097. doi: 10.14778/3554821.

3554829. URL https://dl.acm.org/doi/10.14778/3554821.3554829. Publisher:

VLDB Endowment PUB4722.

[55] Mariem Brahem, Laurent Yeh, and Karine Zeitouni. Efficient astronomical query

processing using spark. In Proceedings of the 26th ACM SIGSPATIAL International

57

https://dl.acm.org/doi/10.1145/1383519.1383526
http://link.springer.com/10.1007/978-1-4842-4470-8_4
https://link.springer.com/10.1007/978-1-4842-7777-5_2
https://link.springer.com/10.1007/978-1-4842-7777-5_2
https://link.springer.com/10.1007/978-1-4842-8029-4_10
https://link.springer.com/10.1007/978-1-4842-8029-4_10
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.14778/3554821.3554829

Conference on Advances in Geographic Information Systems, pages 229–238, Seattle

Washington, November 2018. ACM. ISBN 978-1-4503-5889-7. doi: 10.1145/3274895.

3274942. URL https://dl.acm.org/doi/10.1145/3274895.3274942.

[56] Avrilia Floratou, Umar Farooq Minhas, and Fatma Özcan. SQL-on-Hadoop: full

circle back to shared-nothing database architectures. Proceedings of the VLDB En-

dowment, 7(12):1295–1306, August 2014. ISSN 2150-8097. doi: 10.14778/2732977.

2733002. URL https://dl.acm.org/doi/10.14778/2732977.2733002.

[57] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak, Michał

Świtakowski, Michał Szafrański, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter

Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold Xin, and Matei Za-

haria. Delta lake. Proceedings of the VLDB Endowment, 13(12):3411–3424, August

2020. ISSN 2150-8097. doi: 10.14778/3415478.3415560. URL https://dl.acm.org/

doi/10.14778/3415478.3415560. Publisher: VLDB Endowment.

[58] Overview | Apache Hudi. URL https://hudi.apache.org/docs/overview.

[59] Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, and Matei Zaharia.

Analyzing and comparing lakehouse storage systems. CIDR, January 2023. URL

https://www.cidrdb.org/cidr2023/papers/p92-jain.pdf.

[60] Sara Goodwin, John D. McPherson, and W. Richard McCombie. Coming of age:

ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17

(6):333–351, June 2016. ISSN 1471-0056, 1471-0064. doi: 10.1038/nrg.2016.49. URL

http://www.nature.com/articles/nrg.2016.49.

[61] Gavin R Oliver, Steven N Hart, and Eric W Klee. Bioinformatics for Clinical Next

Generation Sequencing. Clinical Chemistry, 61(1):124–135, January 2015. ISSN 0009-

9147, 1530-8561. doi: 10.1373/clinchem.2014.224360. URL https://academic.oup.

com/clinchem/article/61/1/124/5611448.

[62] Rute Pereira, Jorge Oliveira, and Mário Sousa. Bioinformatics and Computational

Tools for Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clin-

ical Medicine, 9(1):132, January 2020. ISSN 2077-0383. doi: 10.3390/jcm9010132.

URL https://www.mdpi.com/2077-0383/9/1/132.

58

https://dl.acm.org/doi/10.1145/3274895.3274942
https://dl.acm.org/doi/10.14778/2732977.2733002
https://dl.acm.org/doi/10.14778/3415478.3415560
https://dl.acm.org/doi/10.14778/3415478.3415560
https://hudi.apache.org/docs/overview
https://www.cidrdb.org/cidr2023/papers/p92-jain.pdf
http://www.nature.com/articles/nrg.2016.49
https://academic.oup.com/clinchem/article/61/1/124/5611448
https://academic.oup.com/clinchem/article/61/1/124/5611448
https://www.mdpi.com/2077-0383/9/1/132

[63] Jose Garrido-Cardenas, Federico Garcia-Maroto, Jose Alvarez-Bermejo, and Fran-

cisco Manzano-Agugliaro. DNA Sequencing Sensors: An Overview. Sensors, 17

(3):588, March 2017. ISSN 1424-8220. doi: 10.3390/s17030588. URL http:

//www.mdpi.com/1424-8220/17/3/588.

[64] Shanika L. Amarasinghe, Shian Su, Xueyi Dong, Luke Zappia, Matthew E. Ritchie,

and Quentin Gouil. Opportunities and challenges in long-read sequencing data anal-

ysis. Genome Biology, 21(1):30, December 2020. ISSN 1474-760X. doi: 10.1186/

s13059-020-1935-5. URL https://genomebiology.biomedcentral.com/articles/

10.1186/s13059-020-1935-5.

[65] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and

Peter M. Rice. The Sanger FASTQ file format for sequences with quality scores,

and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6):1767–

1771, April 2010. ISSN 0305-1048, 1362-4962. doi: 10.1093/nar/gkp1137. URL

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkp1137.

[66] W R Pearson and D J Lipman. Improved tools for biological sequence comparison.

Proceedings of the National Academy of Sciences, 85(8):2444–2448, April 1988. ISSN

0027-8424, 1091-6490. doi: 10.1073/pnas.85.8.2444. URL https://pnas.org/doi/

full/10.1073/pnas.85.8.2444.

[67] S P Pfeifer. From next-generation resequencing reads to a high-quality variant data

set. Heredity, 118(2):111–124, February 2017. ISSN 0018-067X, 1365-2540. doi: 10.

1038/hdy.2016.102. URL https://www.nature.com/articles/hdy2016102.

[68] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, and R. Durbin. The Sequence Alignment/Map format and SAM-

tools. Bioinformatics, 25(16):2078–2079, August 2009. ISSN 1367-4803. doi:

10.1093/bioinformatics/btp352.

[69] Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney. Efficient

storage of high throughput DNA sequencing data using reference-based compression.

Genome Research, 21(5):734–740, May 2011. ISSN 1088-9051. doi: 10.1101/gr.114819.

110. URL http://genome.cshlp.org/lookup/doi/10.1101/gr.114819.110.

59

http://www.mdpi.com/1424-8220/17/3/588
http://www.mdpi.com/1424-8220/17/3/588
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1935-5
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1935-5
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkp1137
https://pnas.org/doi/full/10.1073/pnas.85.8.2444
https://pnas.org/doi/full/10.1073/pnas.85.8.2444
https://www.nature.com/articles/hdy2016102
http://genome.cshlp.org/lookup/doi/10.1101/gr.114819.110

[70] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.

Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and 1000

Genomes Project Analysis Group. The variant call format and VCFtools. Bioin-

formatics, 27(15):2156–2158, August 2011. ISSN 1367-4803, 1460-2059. doi: 10.

1093/bioinformatics/btr330. URL https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btr330.

[71] Samuel Valentini, Tarcisio Fedrizzi, Francesca Demichelis, and Alessandro Ro-

manel. PaCBAM: fast and scalable processing of whole exome and targeted se-

quencing data. BMC Genomics, 20(1):1018, December 2019. ISSN 1471-2164.

doi: 10.1186/s12864-019-6386-6. URL https://bmcgenomics.biomedcentral.com/

articles/10.1186/s12864-019-6386-6.

[72] Cliff Meldrum, Maria A. Doyle, and Richard W. Tothill. Next-generation sequencing

for cancer diagnostics: a practical perspective. The Clinical Biochemist. Reviews, 32

(4):177–195, November 2011. ISSN 1838-0212.

[73] Sara Pidò, Pietro Crovari, and Franca Garzotto. Modelling the bioinfor-

matics tertiary analysis research process. BMC Bioinformatics, 22(S13):

452, September 2021. ISSN 1471-2105. doi: 10.1186/s12859-021-04310-5.

URL https://bmcbioinformatics.biomedcentral.com/articles/10.1186/

s12859-021-04310-5.

[74] Marco Masseroli, Abdulrahman Kaitoua, Pietro Pinoli, and Stefano Ceri. Mod-

eling and interoperability of heterogeneous genomic big data for integrative pro-

cessing and querying. Methods, 111:3–11, December 2016. ISSN 10462023. doi:

10.1016/j.ymeth.2016.09.002. URL https://linkinghub.elsevier.com/retrieve/

pii/S1046202316303012. Publisher: Academic Press.

[75] Charles A. Steward, Alasdair P. J. Parker, Berge A. Minassian, Sanjay M. Sisodiya,

Adam Frankish, and Jennifer Harrow. Genome annotation for clinical genomic di-

agnostics: strengths and weaknesses. Genome Medicine, 9(1):49, December 2017.

ISSN 1756-994X. doi: 10.1186/s13073-017-0441-1. URL https://genomemedicine.

biomedcentral.com/articles/10.1186/s13073-017-0441-1.

[76] William McLaren, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R. S.

60

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr330
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr330
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6386-6
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6386-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04310-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04310-5
https://linkinghub.elsevier.com/retrieve/pii/S1046202316303012
https://linkinghub.elsevier.com/retrieve/pii/S1046202316303012
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-017-0441-1
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-017-0441-1

Ritchie, Anja Thormann, Paul Flicek, and Fiona Cunningham. The Ensembl Vari-

ant Effect Predictor. Genome Biology, 17(1):122, December 2016. ISSN 1474-760X.

doi: 10.1186/s13059-016-0974-4. URL http://genomebiology.biomedcentral.com/

articles/10.1186/s13059-016-0974-4.

[77] Marco Masseroli, Arif Canakoglu, Pietro Pinoli, Abdulrahman Kaitoua, Andrea

Gulino, Olha Horlova, Luca Nanni, Anna Bernasconi, Stefano Perna, Eirini Sta-

moulakatou, and Stefano Ceri. Processing of big heterogeneous genomic datasets for

tertiary analysis of Next Generation Sequencing data. Bioinformatics, 35(5):729–736,

March 2019. ISSN 1367-4803. doi: 10.1093/BIOINFORMATICS/BTY688. URL

https://academic.oup.com/bioinformatics/article/35/5/729/5067860. Pub-

lisher: Oxford Academic.

[78] Aisling O’Driscoll, Jurate Daugelaite, and Roy D. Sleator. Big data, Hadoop

and cloud computing in genomics. Journal of Biomedical Informatics, 46(5):774–

781, October 2013. ISSN 15320464. doi: 10.1016/j.jbi.2013.07.001. URL https:

//linkinghub.elsevier.com/retrieve/pii/S1532046413001007.

[79] Simone Pallotta, Silvia Cascianelli, and Marco Masseroli. RGMQL: scalable

and interoperable computing of heterogeneous omics big data and metadata in

R/Bioconductor. BMC Bioinformatics, 23(1):1–28, December 2022. ISSN 14712105.

doi: 10.1186/S12859-022-04648-4/FIGURES/8. URL https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/s12859-022-04648-4. Publisher: BioMed

Central Ltd.

[80] Frank Austin Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laser-

son, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Hammerbacher, Michael Lin-

derman, Michael J. Franklin, Anthony D. Joseph, and David A. Patterson. Re-

thinking data-intensive science using scalable analytics systems. Proceedings of the

ACM SIGMOD International Conference on Management of Data, 2015-May:631–

646, May 2015. ISSN 07308078. doi: 10.1145/2723372.2742787. URL https:

//dl.acm.org/doi/10.1145/2723372.2742787. Publisher: Association for Comput-

ing Machinery ISBN: 9781450327589.

[81] Deepak Vohra. Apache Avro. In Practical Hadoop Ecosystem, pages 303–

61

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
https://academic.oup.com/bioinformatics/article/35/5/729/5067860
https://linkinghub.elsevier.com/retrieve/pii/S1532046413001007
https://linkinghub.elsevier.com/retrieve/pii/S1532046413001007
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04648-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04648-4
https://dl.acm.org/doi/10.1145/2723372.2742787
https://dl.acm.org/doi/10.1145/2723372.2742787

323. Apress, Berkeley, CA, 2016. ISBN 978-1-4842-2198-3 978-1-4842-2199-0.

doi: 10.1007/978-1-4842-2199-0_7. URL http://link.springer.com/10.1007/

978-1-4842-2199-0_7.

[82] Deepak Vohra. Apache Parquet. In Practical Hadoop Ecosystem, pages 325–

335. Apress, Berkeley, CA, 2016. ISBN 978-1-4842-2198-3 978-1-4842-2199-0.

doi: 10.1007/978-1-4842-2199-0_8. URL http://link.springer.com/10.1007/

978-1-4842-2199-0_8.

[83] Michael L Heuer, Frank Austin Nothaft, and Walter Blair. biodatageeks/cannoli:

cannoli-parent-spark3_2.12-1.0, January 2023. URL https://zenodo.org/record/

7581150.

[84] Walter Blair, Leonardo De Melo Joao, Larry Davis, and Paul Anderson. Streamlining

the Genomics Processing Pipeline via Named Pipes and Persistent Spark Satasets.

In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering

(BIBE), pages 35–38, Washington, DC, October 2017. IEEE. ISBN 978-1-5386-1324-

5. doi: 10.1109/BIBE.2017.00-82. URL https://ieeexplore.ieee.org/document/

8251262/.

[85] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM. arXiv preprint arXiv:1303.3997, 2013.

[86] Adrian Tan, Gonçalo R. Abecasis, and Hyun Min Kang. Unified representation

of genetic variants. Bioinformatics, 31(13):2202–2204, July 2015. ISSN 1367-4811,

1367-4803. doi: 10.1093/bioinformatics/btv112. URL https://academic.oup.com/

bioinformatics/article/31/13/2202/196142.

[87] Menachem Fromer, Jennifer L. Moran, Kimberly Chambert, Eric Banks, Sarah E.

Bergen, Douglas M. Ruderfer, Robert E. Handsaker, Steven A. McCarroll, Michael C.

O’Donovan, Michael J. Owen, George Kirov, Patrick F. Sullivan, Christina M. Hult-

man, Pamela Sklar, and Shaun M. Purcell. Discovery and Statistical Genotyping

of Copy-Number Variation from Whole-Exome Sequencing Depth. The American

Journal of Human Genetics, 91(4):597–607, October 2012. ISSN 00029297. doi:

10.1016/j.ajhg.2012.08.005. URL https://linkinghub.elsevier.com/retrieve/

pii/S000292971200417X.

62

http://link.springer.com/10.1007/978-1-4842-2199-0_7
http://link.springer.com/10.1007/978-1-4842-2199-0_7
http://link.springer.com/10.1007/978-1-4842-2199-0_8
http://link.springer.com/10.1007/978-1-4842-2199-0_8
https://zenodo.org/record/7581150
https://zenodo.org/record/7581150
https://ieeexplore.ieee.org/document/8251262/
https://ieeexplore.ieee.org/document/8251262/
https://academic.oup.com/bioinformatics/article/31/13/2202/196142
https://academic.oup.com/bioinformatics/article/31/13/2202/196142
https://linkinghub.elsevier.com/retrieve/pii/S000292971200417X
https://linkinghub.elsevier.com/retrieve/pii/S000292971200417X

[88] Dariusz R Augustyn, Łukasz Wyciślik, and Dariusz Mrozek. Perspectives of using

Cloud computing in integrative analysis of multi-omics data. Briefings in Functional

Genomics, March 2021. ISSN 2041-2649. doi: 10.1093/bfgp/elab007.

[89] Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman Kaitoua, Vahid Jalili,

Fernando Palluzzi, Heiko Muller, and Stefano Ceri. GenoMetric Query Language: a

novel approach to large-scale genomic data management. Bioinformatics, 31(12):

1881–1888, June 2015. ISSN 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/

btv048. URL https://academic.oup.com/bioinformatics/article-lookup/doi/

10.1093/bioinformatics/btv048.

[90] Christos Kozanitis and David A. Patterson. GenAp: A distributed SQL interface

for genomic data. BMC Bioinformatics, 17(1):1–8, February 2016. ISSN 14712105.

doi: 10.1186/S12859-016-0904-1/TABLES/2. URL https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/s12859-016-0904-1. Publisher: BioMed

Central Ltd.

[91] Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan,

Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy,

Robert M Davies, and Heng Li. Twelve years of SAMtools and BCFtools. Gi-

gaScience, 10(2), January 2021. ISSN 2047-217X. doi: 10.1093/gigascience/

giab008. URL https://academic.oup.com/gigascience/article/doi/10.1093/

gigascience/giab008/6137722.

[92] James K Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, Andrew

Whitwham, Thomas Keane, and Robert M Davies. HTSlib: C library for read-

ing/writing high-throughput sequencing data. GigaScience, 10(2), January 2021. ISSN

2047-217X. doi: 10.1093/gigascience/giab007. URL https://academic.oup.com/

gigascience/article/doi/10.1093/gigascience/giab007/6139334.

[93] Artem Tarasov, Albert J. Vilella, Edwin Cuppen, Isaac J. Nijman, and Pjotr Prins.

Sambamba: fast processing of NGS alignment formats. Bioinformatics, 31(12):2032–

2034, June 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv098.

[94] Christos Kozanitis, Andrew Heiberg, George Varghese, and Vineet Bafna. Using

Genome Query Language to uncover genetic variation. Bioinformatics, 30(1):1–8,

63

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv048
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv048
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-0904-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-0904-1
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab008/6137722
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab008/6137722
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab007/6139334
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giab007/6139334

January 2014. ISSN 1367-4803. doi: 10.1093/BIOINFORMATICS/BTT250. URL

https://academic.oup.com/bioinformatics/article/30/1/1/234445. Publisher:

Oxford Academic.

[95] Hákon Guðbjartsson, Guðmundur Fr. Georgsson, Sigurjón A. Guðjónsson, Rag-

nar þór Valdimarsson, Jóhann H. Sigurðsson, Sigmar K. Stefánsson, Gísli Másson,

Gísli Magnússon, Vilmundur Pálmason, and Kári Stefánsson. GORpipe: a query

tool for working with sequence data based on a Genomic Ordered Relational (GOR)

architecture. Bioinformatics, 32(20):3081–3088, October 2016. ISSN 1367-4803,

1460-2059. doi: 10.1093/bioinformatics/btw199. URL https://academic.oup.com/

bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw199.

[96] Christopher T. Lee and Manolis Maragkakis. SamQL: a structured query lan-

guage and filtering tool for the SAM/BAM file format. BMC Bioinformatics,

22(1):1–8, December 2021. ISSN 14712105. doi: 10.1186/S12859-021-04390-3/

FIGURES/2. URL https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/s12859-021-04390-3. Publisher: BioMed Central Ltd.

[97] Xinjie Zhu, Qiang Zhang, Eric Dun Ho, Ken Hung-On Yu, Chris Liu, Tim H. Huang,

Alfred Sze-Lok Cheng, Ben Kao, Eric Lo, and Kevin Y. Yip. START: a system

for flexible analysis of hundreds of genomic signal tracks in few lines of SQL-like

queries. BMC Genomics, 18(1):749, December 2017. ISSN 1471-2164. doi: 10.1186/

s12864-017-4071-1. URL http://bmcgenomics.biomedcentral.com/articles/10.

1186/s12864-017-4071-1.

[98] Luca Nanni, Pietro Pinoli, Arif Canakoglu, and Stefano Ceri. PyGMQL: scal-

able data extraction and analysis for heterogeneous genomic datasets. BMC

Bioinformatics, 20(1):560, December 2019. ISSN 1471-2105. doi: 10.

1186/s12859-019-3159-9. URL https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/s12859-019-3159-9.

[99] Karen Feng, Henry Davidge, Williambrandler, Kiavash Kianfar, T. Alex, Mah-

Databricks, Boris Boutkov, Brian Cajes, Ahir Reddy, Amir Kermany, Cameron Smith,

Douglas Moore, Frank Austin Nothaft, Herman Van Hovell, Joseph Bradley, Leland,

64

https://academic.oup.com/bioinformatics/article/30/1/1/234445
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw199
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw199
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04390-3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04390-3
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4071-1
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4071-1
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3159-9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3159-9

Michael L Heuer, and Dim De Grave. projectglow/glow: v1.2.1, April 2022. URL

https://zenodo.org/record/6474169.

[100] Arash Bayat, Piotr Szul, Aidan R O’Brien, Robert Dunne, Brendan Hosking, Yatish

Jain, Cameron Hosking, Oscar J Luo, Natalie Twine, and Denis C Bauer. Vari-

antSpark: Cloud-based machine learning for association study of complex phenotype

and large-scale genomic data. GigaScience, 9(8), August 2020. ISSN 2047-217X. doi:

10.1093/gigascience/giaa077.

[101] Hail Team. Hail, December 2022. URL https://zenodo.org/record/7439252.

[102] Ram Vinay Pandey and Christian Schlötterer. DistMap: A Toolkit for Distributed

Short Read Mapping on a Hadoop Cluster. PLoS ONE, 8(8):e72614, August 2013.

ISSN 1932-6203. doi: 10.1371/journal.pone.0072614. URL https://dx.plos.org/

10.1371/journal.pone.0072614.

[103] Luca Pireddu, Simone Leo, and Gianluigi Zanetti. Seal: A distributed short read

mapping and duplicate removal tool. Bioinformatics, 27(15):2159–2160, August 2011.

ISSN 13674803. doi: 10.1093/BIOINFORMATICS/BTR325.

[104] José M. Abuín, Juan C. Pichel, Tomás F. Pena, and Jorge Amigo. SparkBWA:

Speeding Up the Alignment of High-Throughput DNA Sequencing Data. PLOS ONE,

11(5):e0155461, May 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.0155461. URL

https://dx.plos.org/10.1371/journal.pone.0155461.

[105] André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Kor-

pelainen, Gianluigi Zanetti, and Keijo Heljanko. SeqPig: simple and scalable script-

ing for large sequencing data sets in Hadoop. Bioinformatics, 30(1):119–120, January

2014. ISSN 1460-2059. doi: 10.1093/bioinformatics/btt601.

[106] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemelä, Eija Kor-

pelainen, and Keijo Heljanko. Hadoop-BAM: directly manipulating next generation

sequencing data in the cloud. Bioinformatics, 28(6):876–877, March 2012. ISSN 1460-

2059. doi: 10.1093/bioinformatics/bts054.

[107] Tom White, Michael L. Heuer, Louis Bergelson, Chris Norman, Daniel Gómez-

65

https://zenodo.org/record/6474169
https://zenodo.org/record/7439252
https://dx.plos.org/10.1371/journal.pone.0072614
https://dx.plos.org/10.1371/journal.pone.0072614
https://dx.plos.org/10.1371/journal.pone.0155461

Sánchez, and tedsharpe. biodatageeks/disq: disq-0.3.8, January 2023. URL https:

//doi.org/10.5281/zenodo.7581194.

[108] Geraldine A. Van der Auwera. From FastQ Data to High[U+2010]Confidence

Variant Calls: The Genome Analysis Toolkit Best Practices pipeline. Current Pro-

tocols in Bioinformatics, 43(1), October 2013. ISSN 1934-3396, 1934-340X. doi:

10.1002/0471250953.bi1110s43. URL https://onlinelibrary.wiley.com/doi/10.

1002/0471250953.bi1110s43.

[109] Hamid Mushtaq, Frank Liu, Carlos Costa, Gang Liu, Peter Hofstee, and Zaid Al-

Ars. SparkGA. In Proceedings of the 8th ACM International Conference on Bioinfor-

matics, Computational Biology,and Health Informatics, pages 148–157, New York, NY,

USA, August 2017. ACM. ISBN 978-1-4503-4722-8. doi: 10.1145/3107411.3107438.

URL https://dl.acm.org/doi/10.1145/3107411.3107438.

[110] Hamid Mushtaq, Nauman Ahmed, and Zaid Al-Ars. SparkGA2: Production-quality

memory-efficient Apache Spark based genome analysis framework. PLOS ONE, 14

(12):e0224784, December 2019. ISSN 1932-6203. doi: 10.1371/journal.pone.0224784.

URL https://dx.plos.org/10.1371/journal.pone.0224784.

[111] Dries Decap, Joke Reumers, Charlotte Herzeel, Pascal Costanza, and Jan Fos-

tier. Halvade: scalable sequence analysis with MapReduce. Bioinformatics, 31

(15):2482–2488, August 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/

btv179. URL https://academic.oup.com/bioinformatics/article-lookup/doi/

10.1093/bioinformatics/btv179.

[112] Dries Decap, Joke Reumers, Charlotte Herzeel, Pascal Costanza, and Jan Fostier.

Halvade-RNA: Parallel variant calling from transcriptomic data using MapReduce.

PLOS ONE, 12(3):e0174575, March 2017. ISSN 1932-6203. doi: 10.1371/journal.

pone.0174575.

[113] Alyssa Kramer Morrow, George Zhixuan He, Frank Austin Nothaft, Eric Tongching

Tu, Justin Paschall, Nir Yosef, and Anthony Douglas Joseph. Mango: Exploratory

Data Analysis for Large-Scale Sequencing Datasets. Cell Systems, 9(6):609–613.e3,

December 2019. ISSN 2405-4712. doi: 10.1016/J.CELS.2019.11.002. Publisher: Cell

Press.

66

https://doi.org/10.5281/zenodo.7581194
https://doi.org/10.5281/zenodo.7581194
https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1110s43
https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1110s43
https://dl.acm.org/doi/10.1145/3107411.3107438
https://dx.plos.org/10.1371/journal.pone.0224784
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv179
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv179

[114] José M. Abuín, Juan C. Pichel, Tomás F. Pena, and Jorge Amigo. BigBWA: ap-

proaching the Burrows–Wheeler aligner to Big Data technologies. Bioinformatics,

page btv506, August 2015. ISSN 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/

btv506. URL https://academic.oup.com/bioinformatics/article-lookup/doi/

10.1093/bioinformatics/btv506.

[115] Lingqi Zhang, Cheng Liu, and Shoubin Dong. PipeMEM: A Framework to Speed Up

BWA-MEM in Spark with Low Overhead. Genes, 10(11):886, November 2019. ISSN

2073-4425. doi: 10.3390/genes10110886. URL https://www.mdpi.com/2073-4425/

10/11/886.

[116] Guoguang Zhao, Cheng Ling, and Donghong Sun. SparkSW: Scalable Dis-

tributed Computing System for Large-Scale Biological Sequence Alignment. In 2015

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

pages 845–852, Shenzhen, China, May 2015. IEEE. ISBN 978-1-4799-8006-2. doi:

10.1109/CCGrid.2015.55. URL http://ieeexplore.ieee.org/document/7152568/.

[117] Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, Jinhong Zhou,

and Xuehai Zhou. DSA: Scalable Distributed Sequence Alignment System Using SIMD

Instructions. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGRID), pages 758–761, Madrid, Spain, May 2017. IEEE.

ISBN 978-1-5090-6611-7. doi: 10.1109/CCGRID.2017.74. URL http://ieeexplore.

ieee.org/document/7973775/.

[118] Bo Xu, Changlong Li, Hang Zhuang, Jiali Wang, Qingfeng Wang, and Xuehai

Zhou. Efficient Distributed Smith-Waterman Algorithm Based on Apache Spark. In

2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pages 608–

615, Honolulu, CA, USA, June 2017. IEEE. ISBN 978-1-5386-1993-3. doi: 10.1109/

CLOUD.2017.83. URL http://ieeexplore.ieee.org/document/8030640/.

[119] Dries Decap, Louise de Schaetzen van Brienen, Maarten Larmuseau, Pascal

Costanza, Charlotte Herzeel, Roel Wuyts, Kathleen Marchal, and Jan Fostier. Hal-

vade somatic: Somatic variant calling with Apache Spark. GigaScience, 11, January

2022. ISSN 2047-217X. doi: 10.1093/gigascience/giab094.

67

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv506
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv506
https://www.mdpi.com/2073-4425/10/11/886
https://www.mdpi.com/2073-4425/10/11/886
http://ieeexplore.ieee.org/document/7152568/
http://ieeexplore.ieee.org/document/7973775/
http://ieeexplore.ieee.org/document/7973775/
http://ieeexplore.ieee.org/document/8030640/

[120] Tanveer Ahmad, Zaid Al Ars, and H Peter Hofstee. VC@Scale: Scalable and high-

performance variant calling on cluster environments. GigaScience, 10(9), September

2021. ISSN 2047-217X. doi: 10.1093/gigascience/giab057.

[121] Zaid Al-Ars, Saiyi Wang, and Hamid Mushtaq. SparkRA: Enabling Big Data

Scalability for the GATK RNA-seq Pipeline with Apache Spark. Genes, 11(1):

53, January 2020. ISSN 2073-4425. doi: 10.3390/genes11010053. URL https:

//www.mdpi.com/2073-4425/11/1/53.

[122] Liren Huang, Jan Krüger, and Alexander Sczyrba. Analyzing large scale genomic

data on the cloud with Sparkhit. Bioinformatics, 34(9):1457–1465, May 2018. ISSN

1367-4803. doi: 10.1093/BIOINFORMATICS/BTX808. URL https://academic.

oup.com/bioinformatics/article/34/9/1457/4747885. Publisher: Oxford Aca-

demic.

[123] Runxin Guo, Yi Zhao, Quan Zou, Xiaodong Fang, and Shaoliang Peng. Bioinfor-

matics applications on Apache Spark. GigaScience, August 2018. ISSN 2047-217X.

doi: 10.1093/gigascience/giy098.

[124] Jamie J. Alnasir and Hugh P. Shanahan. The application of Hadoop in struc-

tural bioinformatics. Briefings in Bioinformatics, 21(1):96–105, January 2020. ISSN

14774054. doi: 10.1093/BIB/BBY106. URL https://academic.oup.com/bib/

article/21/1/96/5162997. Publisher: Oxford Academic.

[125] Andrea Manconi, Matteo Gnocchi, Luciano Milanesi, Osvaldo Marullo, and Giu-

liano Armano. Framing Apache Spark in life sciences. Heliyon, page e13368,

February 2023. ISSN 24058440. doi: 10.1016/j.heliyon.2023.e13368. URL https:

//linkinghub.elsevier.com/retrieve/pii/S2405844023005753.

[126] Corinna Giebler, Christoph Groger, Eva Hoos, Holger Schwarz, and Bernhard

Mitschang. A Zone Reference Model for Enterprise-Grade Data Lake Management.

In 2020 IEEE 24th International Enterprise Distributed Object Computing Confer-

ence (EDOC), pages 57–66, Eindhoven, Netherlands, October 2020. IEEE. ISBN 978-

1-72816-473-1. doi: 10.1109/EDOC49727.2020.00017. URL https://ieeexplore.

ieee.org/document/9233155/.

68

https://www.mdpi.com/2073-4425/11/1/53
https://www.mdpi.com/2073-4425/11/1/53
https://academic.oup.com/bioinformatics/article/34/9/1457/4747885
https://academic.oup.com/bioinformatics/article/34/9/1457/4747885
https://academic.oup.com/bib/article/21/1/96/5162997
https://academic.oup.com/bib/article/21/1/96/5162997
https://linkinghub.elsevier.com/retrieve/pii/S2405844023005753
https://linkinghub.elsevier.com/retrieve/pii/S2405844023005753
https://ieeexplore.ieee.org/document/9233155/
https://ieeexplore.ieee.org/document/9233155/

[127] Ron L’Esteve. Databricks. In The Azure Data Lakehouse Toolkit, pages 83–

139. Apress, Berkeley, CA, 2022. ISBN 978-1-4842-8232-8 978-1-4842-8233-5.

doi: 10.1007/978-1-4842-8233-5_3. URL https://link.springer.com/10.1007/

978-1-4842-8233-5_3.

[128] Surajit Chaudhuri. An overview of query optimization in relational systems. In Pro-

ceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Prin-

ciples of database systems - PODS ’98, pages 34–43, Seattle, Washington, United

States, 1998. ACM Press. ISBN 978-0-89791-996-8. doi: 10.1145/275487.275492.

URL http://portal.acm.org/citation.cfm?doid=275487.275492.

[129] Yang Liao, Gordon K. Smyth, and Wei Shi. featureCounts: an efficient general pur-

pose program for assigning sequence reads to genomic features. Bioinformatics, 30(7):

923–930, April 2014. ISSN 1367-4811, 1367-4803. doi: 10.1093/bioinformatics/btt656.

URL https://academic.oup.com/bioinformatics/article/30/7/923/232889.

[130] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson,

Robert Gentleman, Martin T. Morgan, and Vincent J. Carey. Software for Computing

and Annotating Genomic Ranges. PLOS Computational Biology, 9(8):e1003118, 2013.

ISSN 1553-7358. doi: 10.1371/JOURNAL.PCBI.1003118. URL https://journals.

plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003118. Publisher:

Public Library of Science.

[131] Heng Li. A statistical framework for SNP calling, mutation discovery, association

mapping and population genetical parameter estimation from sequencing data. Bioin-

formatics, 27(21):2987–2993, November 2011. ISSN 1367-4811, 1367-4803. doi: 10.

1093/bioinformatics/btr509. URL https://academic.oup.com/bioinformatics/

article/27/21/2987/217423.

[132] Ruibang Luo, Chak-Lim Wong, Yat-Sing Wong, Chi-Ian Tang, Chi-Man Liu, Chi-

Ming Leung, and Tak-Wah Lam. Exploring the limit of using a deep neural network

on pileup data for germline variant calling. Nature Machine Intelligence, 2(4):220–

227, April 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-0167-4. URL https:

//www.nature.com/articles/s42256-020-0167-4.

69

https://link.springer.com/10.1007/978-1-4842-8233-5_3
https://link.springer.com/10.1007/978-1-4842-8233-5_3
http://portal.acm.org/citation.cfm?doid=275487.275492
https://academic.oup.com/bioinformatics/article/30/7/923/232889
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003118
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003118
https://academic.oup.com/bioinformatics/article/27/21/2987/217423
https://academic.oup.com/bioinformatics/article/27/21/2987/217423
https://www.nature.com/articles/s42256-020-0167-4
https://www.nature.com/articles/s42256-020-0167-4

[133] Yadong Liu, Tao Jiang, Yan Gao, Bo Liu, Tianyi Zang, and Yadong Wang. Psi-

Caller: A Lightweight Short Read-Based Variant Caller With High Speed and Ac-

curacy. Frontiers in Cell and Developmental Biology, 9:731424, August 2021. ISSN

2296-634X. doi: 10.3389/fcell.2021.731424. URL https://www.frontiersin.org/

articles/10.3389/fcell.2021.731424/full.

[134] Daniel C. Koboldt, Qunyuan Zhang, David E. Larson, Dong Shen, Michael D.

McLellan, Ling Lin, Christopher A. Miller, Elaine R. Mardis, Li Ding, and Richard K.

Wilson. VarScan 2: Somatic mutation and copy number alteration discovery in cancer

by exome sequencing. Genome Research, 22(3):568–576, March 2012. ISSN 1088-

9051. doi: 10.1101/gr.129684.111. URL http://genome.cshlp.org/lookup/doi/

10.1101/gr.129684.111.

[135] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. The AWK programming

language. Addison-Wesley Longman Publishing Co., Inc., 1987.

[136] Christopher Adamson. Mastering data warehouse aggregates: solutions for star

schema performance. John Wiley & Sons, 2012.

[137] Amit Shukla, Prasad Deshpande, Jeffrey F Naughton, and others. Materialized

view selection for multidimensional datasets. In VLDB, volume 98, pages 488–499,

1998.

[138] Star Schema vs. OBT for Data Warehouse Performance | Blog | Fivetran. URL

https://www.fivetran.com/blog/star-schema-vs-obt.

[139] Xiaoming Liu, Chunlei Wu, Chang Li, and Eric Boerwinkle. dbNSFP v3.0: A One-

Stop Database of Functional Predictions and Annotations for Human Nonsynonymous

and Splice-Site SNVs. Human Mutation, 37(3):235–241, March 2016. ISSN 10597794.

doi: 10.1002/humu.22932. URL https://onlinelibrary.wiley.com/doi/10.1002/

humu.22932.

[140] Exome Aggregation Consortium, Monkol Lek, Konrad J. Karczewski, Eric V.

Minikel, Kaitlin E. Samocha, Eric Banks, Timothy Fennell, Anne H. O’Donnell-

Luria, James S. Ware, Andrew J. Hill, Beryl B. Cummings, Taru Tukiainen, Daniel P.

Birnbaum, Jack A. Kosmicki, Laramie E. Duncan, Karol Estrada, Fengmei Zhao,

70

https://www.frontiersin.org/articles/10.3389/fcell.2021.731424/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.731424/full
http://genome.cshlp.org/lookup/doi/10.1101/gr.129684.111
http://genome.cshlp.org/lookup/doi/10.1101/gr.129684.111
https://www.fivetran.com/blog/star-schema-vs-obt
https://onlinelibrary.wiley.com/doi/10.1002/humu.22932
https://onlinelibrary.wiley.com/doi/10.1002/humu.22932

James Zou, Emma Pierce-Hoffman, Joanne Berghout, David N. Cooper, Nicole De-

flaux, Mark DePristo, Ron Do, Jason Flannick, Menachem Fromer, Laura Gauthier,

Jackie Goldstein, Namrata Gupta, Daniel Howrigan, Adam Kiezun, Mitja I. Kurki,

Ami Levy Moonshine, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso, Ryan

Poplin, Manuel A. Rivas, Valentin Ruano-Rubio, Samuel A. Rose, Douglas M. Rud-

erfer, Khalid Shakir, Peter D. Stenson, Christine Stevens, Brett P. Thomas, Grace

Tiao, Maria T. Tusie-Luna, Ben Weisburd, Hong-Hee Won, Dongmei Yu, David M.

Altshuler, Diego Ardissino, Michael Boehnke, John Danesh, Stacey Donnelly, Roberto

Elosua, Jose C. Florez, Stacey B. Gabriel, Gad Getz, Stephen J. Glatt, Christina M.

Hultman, Sekar Kathiresan, Markku Laakso, Steven McCarroll, Mark I. McCarthy,

Dermot McGovern, Ruth McPherson, Benjamin M. Neale, Aarno Palotie, Shaun M.

Purcell, Danish Saleheen, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan,

Jaakko Tuomilehto, Ming T. Tsuang, Hugh C. Watkins, James G. Wilson, Mark J.

Daly, and Daniel G. MacArthur. Analysis of protein-coding genetic variation in 60,706

humans. Nature, 536(7616):285–291, August 2016. ISSN 0028-0836, 1476-4687. doi:

10.1038/nature19057. URL http://www.nature.com/articles/nature19057.

[141] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian

Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and Christopher

Berner. Presto: SQL on Everything. In 2019 IEEE 35th International Conference on

Data Engineering (ICDE), pages 1802–1813. IEEE, April 2019. ISBN 978-1-5386-7474-

1. doi: 10.1109/ICDE.2019.00196. URL https://ieeexplore.ieee.org/document/

8731547/.

[142] MKABV Bittorf, Taras Bobrovytsky, CCACJ Erickson, Martin Grund Daniel

Hecht, MJIJL Kuff, Dileep Kumar Alex Leblang, NLIPH Robinson, David Rorke Sil-

vius Rus, JRDTS Wanderman, and Milne Michael Yoder. Impala: A modern, open-

source sql engine for hadoop. In Proceedings of the 7th biennial conference on inno-

vative data systems research, 2015.

[143] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the memory

wall in MonetDB. Communications of the ACM, 51(12):77–85, December 2008. ISSN

0001-0782, 1557-7317. doi: 10.1145/1409360.1409380. URL https://dl.acm.org/

doi/10.1145/1409360.1409380.

71

http://www.nature.com/articles/nature19057
https://ieeexplore.ieee.org/document/8731547/
https://ieeexplore.ieee.org/document/8731547/
https://dl.acm.org/doi/10.1145/1409360.1409380
https://dl.acm.org/doi/10.1145/1409360.1409380

[144] Roberto Tardío, Alejandro Maté, and Juan Trujillo. A New Big Data Benchmark

for OLAP Cube Design Using Data Pre-Aggregation Techniques. Applied Sciences,

10(23):8674, December 2020. ISSN 2076-3417. doi: 10.3390/app10238674. URL

https://www.mdpi.com/2076-3417/10/23/8674.

[145] Joelle Mbatchou, Leland Barnard, Joshua Backman, Anthony Marcketta, Jack A.

Kosmicki, Andrey Ziyatdinov, Christian Benner, Colm O’Dushlaine, Mathew Barber,

Boris Boutkov, Lukas Habegger, Manuel Ferreira, Aris Baras, Jeffrey Reid, Goncalo

Abecasis, Evan Maxwell, and Jonathan Marchini. Computationally efficient whole-

genome regression for quantitative and binary traits. Nature Genetics, 53(7):1097–

1103, July 2021. ISSN 1061-4036, 1546-1718. doi: 10.1038/s41588-021-00870-7. URL

http://www.nature.com/articles/s41588-021-00870-7.

[146] Jianglin Feng, Aakrosh Ratan, and Nathan C. Sheffield. Augmented Interval List: A

novel data structure for efficient genomic interval search. Bioinformatics, 35(23):4907–

4911, December 2019. ISSN 14602059. doi: 10.1093/BIOINFORMATICS/BTZ407.

Publisher: Oxford University Press.

[147] Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to algorithms. The MIT Press, Cambridge, Massachusett, fourth edition

edition, 2022. ISBN 978-0-262-36750-9. OCLC: 1305060400.

[148] Alexander V. Alekseyenko and Christopher J. Lee. Nested Containment List

(NCList): A new algorithm for accelerating interval query of genome alignment and

interval databases. Bioinformatics, 23(11):1386–1393, June 2007. ISSN 13674803. doi:

10.1093/BIOINFORMATICS/BTL647.

[149] Frank Austin Nothaft. Scalable systems and algorithms for genomic variant analysis.

PhD thesis, UC Berkeley, 2017.

[150] Mike Lin. mwiewior/iitii: 1.0.0, February 2023. URL https://zenodo.org/

record/7674122.

[151] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26(6):841–842, March 2010. ISSN 1367-

4811, 1367-4803. doi: 10.1093/bioinformatics/btq033. URL https://academic.oup.

com/bioinformatics/article/26/6/841/244688.

72

https://www.mdpi.com/2076-3417/10/23/8674
http://www.nature.com/articles/s41588-021-00870-7
https://zenodo.org/record/7674122
https://zenodo.org/record/7674122
https://academic.oup.com/bioinformatics/article/26/6/841/244688
https://academic.oup.com/bioinformatics/article/26/6/841/244688

[152] Brent S. Pedersen and Aaron R. Quinlan. Mosdepth: quick coverage calculation

for genomes and exomes. Bioinformatics, 34(5):867–868, March 2018. ISSN 1367-

4803. doi: 10.1093/BIOINFORMATICS/BTX699. URL https://academic.oup.

com/bioinformatics/article/34/5/867/4583630. Publisher: Oxford Academic.

[153] MIchele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba.

Adoption, Support, and Challenges of Infrastructure-as-Code: Insights from Industry.

In 2019 IEEE International Conference on Software Maintenance and Evolution (IC-

SME), pages 580–589. IEEE, September 2019. ISBN 978-1-72813-094-1. doi: 10.1109/

ICSME.2019.00092. URL https://ieeexplore.ieee.org/document/8919181/.

[154] Roshan N. Rajapakse, Mansooreh Zahedi, M. Ali Babar, and Haifeng Shen. Chal-

lenges and solutions when adopting DevSecOps: A systematic review. Informa-

tion and Software Technology, 141:106700, January 2022. ISSN 09505849. doi:

10.1016/j.infsof.2021.106700. URL https://linkinghub.elsevier.com/retrieve/

pii/S0950584921001543.

[155] Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. Leveraging Prac-

titioners’ Feedback to Improve a Security Linter. In 37th IEEE/ACM International

Conference on Automated Software Engineering, pages 1–12, Rochester MI USA, Oc-

tober 2022. ACM. ISBN 978-1-4503-9475-8. doi: 10.1145/3551349.3560419. URL

https://dl.acm.org/doi/10.1145/3551349.3560419.

[156] Jon Bryant. Driving into the Cloud: What is Finops? ITNOW, 64(3):54–55,

August 2022. ISSN 1746-5702, 1746-5710. doi: 10.1093/combul/bwac097. URL https:

//academic.oup.com/itnow/article/64/3/54/6672552.

[157] JR Storment and Mike Fuller. Cloud FinOps. " O’Reilly Media, Inc.", 2023.

[158] Yevgeniy Brikman. Terraform: Up and Running. " O’Reilly Media, Inc.", 2022.

[159] BANK.pl – Portal finansowy | Polskie politechniki z grantami Microsoft

Azure - BANK.pl - Portal finansowy, June 2014. URL https://bank.pl/

polskie-politechniki-z-grantami-microsoft-azure/?id=44547&catid=358.

Section: Finanse i gospodarka.

73

https://academic.oup.com/bioinformatics/article/34/5/867/4583630
https://academic.oup.com/bioinformatics/article/34/5/867/4583630
https://ieeexplore.ieee.org/document/8919181/
https://linkinghub.elsevier.com/retrieve/pii/S0950584921001543
https://linkinghub.elsevier.com/retrieve/pii/S0950584921001543
https://dl.acm.org/doi/10.1145/3551349.3560419
https://academic.oup.com/itnow/article/64/3/54/6672552
https://academic.oup.com/itnow/article/64/3/54/6672552
https://bank.pl/polskie-politechniki-z-grantami-microsoft-azure/?id=44547&catid=358
https://bank.pl/polskie-politechniki-z-grantami-microsoft-azure/?id=44547&catid=358

[160] Marek S. Wiewiorka, Alicja Szabelska, and Michal J. Okoniewski. Analysis of

AmpliSeq RNA-Sequencing Enrichment Panels. In Marzena Kryszkiewicz, Sang-

hamitra Bandyopadhyay, Henryk Rybinski, and Sankar K. Pal, editors, Pattern

Recognition and Machine Intelligence, volume 9124, pages 495–500. Springer In-

ternational Publishing, Cham, 2015. ISBN 978-3-319-19940-5 978-3-319-19941-2.

doi: 10.1007/978-3-319-19941-2_47. URL http://link.springer.com/10.1007/

978-3-319-19941-2_47. Series Title: Lecture Notes in Computer Science.

[161] Monika Szczerba, Marek S. Wiewiórka, Michał J. Okoniewski, and Henryk Ry-

biński. Scalable Cloud-Based Data Analysis Software Systems for Big Data from

Next Generation Sequencing. In Nathalie Japkowicz and Jerzy Stefanowski, editors,

Big Data Analysis: New Algorithms for a New Society, volume 16, pages 263–283.

Springer International Publishing, Cham, 2016. ISBN 978-3-319-26987-0 978-3-319-

26989-4. doi: 10.1007/978-3-319-26989-4_11. URL http://link.springer.com/10.

1007/978-3-319-26989-4_11. Series Title: Studies in Big Data.

[162] Michal Okoniewski, Rafał Płoski, Marek Wiewiorka, and Urszula Demkow. Future

Directions. In Clinical Applications for Next-Generation Sequencing, pages 281–294.

Elsevier, 2016. ISBN 978-0-12-801739-5. doi: 10.1016/B978-0-12-801739-5.00015-5.

URL https://linkinghub.elsevier.com/retrieve/pii/B9780128017395000155.

[163] Znamy wyniki I edycji konkursu Best Paper / 2020 / Wyniki konkursów

/ Konkursy / Strona główna - Uczelnia Badawcza - Politechnika Warsza-

wska. URL https://badawcza.pw.edu.pl/Konkursy/Wyniki-konkursow/2020/

Znamy-wyniki-I-edycji-konkursu-Best-Paper.

[164] Maria Xekalaki, Juan Fumero, Athanasios Stratikopoulos, Katerina Doka, Chris-

tos Katsakioris, Constantinos Bitsakos, Nectarios Koziris, and Christos Kotselidis.

Enabling Transparent Acceleration of Big Data Frameworks Using Heterogeneous

Hardware. Proceedings of the VLDB Endowment, 15(13):3869–3882, September 2022.

ISSN 2150-8097. doi: 10.14778/3565838.3565842. URL https://dl.acm.org/doi/

10.14778/3565838.3565842.

[165] Dalton Lunga, Jonathan Gerrand, Lexie Yang, Christopher Layton, and Robert

Stewart. Apache Spark Accelerated Deep Learning Inference for Large Scale Satellite

74

http://link.springer.com/10.1007/978-3-319-19941-2_47
http://link.springer.com/10.1007/978-3-319-19941-2_47
http://link.springer.com/10.1007/978-3-319-26989-4_11
http://link.springer.com/10.1007/978-3-319-26989-4_11
https://linkinghub.elsevier.com/retrieve/pii/B9780128017395000155
https://badawcza.pw.edu.pl/Konkursy/Wyniki-konkursow/2020/Znamy-wyniki-I-edycji-konkursu-Best-Paper
https://badawcza.pw.edu.pl/Konkursy/Wyniki-konkursow/2020/Znamy-wyniki-I-edycji-konkursu-Best-Paper
https://dl.acm.org/doi/10.14778/3565838.3565842
https://dl.acm.org/doi/10.14778/3565838.3565842

Image Analytics. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 13:271–283, 2020. ISSN 1939-1404, 2151-1535. doi: 10.1109/

JSTARS.2019.2959707. URL https://ieeexplore.ieee.org/document/8949817/.

[166] Samyuktha Muralidharan, Savita Yadav, Jungwoo Huh, Sanghoon Lee, and Jong-

wook Woo. Scalable Prediction Models for Airbnb Listing in Spark Big Data Cluster

using GPU-accelerated RAPIDS. Journal of Information and Communication Con-

vergence Engineering, 20(2):96–102, June 2022. doi: 10.6109/JICCE.2022.20.2.96.

URL https://doi.org/10.6109/JICCE.2022.20.2.96.

[167] Kerina Jones, Helen Daniels, Sharon Heys, Arron Lacey, and David V Ford. To-

ward a Risk-Utility Data Governance Framework for Research Using Genomic and

Phenotypic Data in Safe Havens: Multifaceted Review. Journal of Medical Inter-

net Research, 22(5):e16346, May 2020. ISSN 1438-8871. doi: 10.2196/16346. URL

https://www.jmir.org/2020/5/e16346.

75

https://ieeexplore.ieee.org/document/8949817/
https://doi.org/10.6109/JICCE.2022.20.2.96
https://www.jmir.org/2020/5/e16346

76

CHAPTER 6

Copies of the publications constituting the Dissertation

• [P1] M.S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and

M.J. Okoniewski. SparkSeq: Fast, scalable and cloud-ready tool for the interactive

genomic data analysis with nucleotide precision. Bioinformatics, 30(18), 2014, Page:

79

• [P2] M.S. Wiewiórka, D.P. Wysakowicz, M.J. Okoniewski, and T. Gambin. Bench-

marking distributed data warehouse solutions for storing genomic variant information.

Database : the journal of biological databases and curation, 2017, Page: 109

• [P3] Anastasiia Hryhorzhevska, Marek Wiewiórka, Michał Okoniewski, and Tomasz

Gambin. Scalable Framework for the Analysis of Population Structure Using the Next

Generation Sequencing Data. In Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 10352 LNAI, pages 471–480. 2017, Page: 125

• [P4] Marek Wiewiórka, Anna Leśniewska, Agnieszka Szmurło, Kacper Stępień, Ma-

teusz Borowiak, Michał Okoniewski, and Tomasz Gambin. SeQuiLa: an elastic, fast

and scalable SQL-oriented solution for processing and querying genomic intervals.

Bioinformatics, 35(12):2156–2158, June 2019, Page: 135

• [P5] Marek Wiewiórka, Agnieszka Szmurło, Wiktor Kuśmirek, and Tomasz Gambin.

77

SeQuiLa-cov: A fast and scalable library for depth of coverage calculations. Giga-

Science, 8(8), August 2019, Page: 138

• [P6] Marek Wiewiórka, Agnieszka Szmurło, Paweł Stankiewicz, and Tomasz Gambin.

Cloud-native distributed genomic pileup operations. Bioinformatics, December 2022,

Page: 145

78

Vol. 30 no. 18 2014, pages 2652–2653
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu343

Genome analysis Advance Access publication May 19, 2014

SparkSeq: fast, scalable and cloud-ready tool for the interactive

genomic data analysis with nucleotide precision
Marek S. Wiewi �orka1,*, Antonio Messina2, Alicja Pacholewska3,4, Sergio Maffioletti2,
Piotr Gawrysiak1 and Michal J. Okoniewski5
1Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland, ICS 00-665 Warsaw (MW, PG),
2Grid Computing Competence Center-GC3, University of Zurich, 8057 Z €urich (SM, AM), 3Swiss Institute of Equine
Medicine, Vetsuisse Faculty, University of Bern and ALP-Haras, 3001 Bern (AP), 4Institute of Genetics, Vetsuisse Faculty,
University of Bern, Bern, 3001 Bern (AP) and 5Functional Genomics Center Zurich, CH-8057 Zurich, Switzerland

Associate Editor: Inanc Birol

ABSTRACT

Summary: Many time-consuming analyses of next-generation

sequencing data can be addressed with modern cloud computing.

The Apache Hadoop-based solutions have become popular in gen-

omics because of their scalability in a cloud infrastructure. So far,

most of these tools have been used for batch data processing

rather than interactive data querying.

The SparkSeq software has been created to take advantage of a new

MapReduce framework, Apache Spark, for next-generation sequen-

cing data. SparkSeq is a general-purpose, flexible and easily extend-

able library for genomic cloud computing. It can be used to build

genomic analysis pipelines in Scala and run them in an interactive

way. SparkSeq opens up the possibility of customized ad hoc sec-

ondary analyses and iterative machine learning algorithms. This article

demonstrates its scalability and overall fast performance by running

the analyses of sequencing datasets. Tests of SparkSeq also prove

that the use of cache and HDFS block size can be tuned for the op-

timal performance on multiple worker nodes.

Availability and implementation: Available under open source

Apache 2.0 license: https://bitbucket.org/mwiewiorka/sparkseq/.

Contact: marek.wiewiorka@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on December 17, 2013; revised on April 18, 2014; accepted

on May 12, 2014

In recent years, next-generation sequencing (NGS) has become

the essential technology that is producing precise insight into the

genomes and transcriptomes of living organisms. A standard

sequencer run produces hundreds gigabase pairs of short reads.

The experimental results (fastq or alignment files) can be re-

garded as big data, in particular with the high number of biolo-

gical samples. This can be less overwhelming when lab

techniques of preselection are applied or when the data are aggre-

gated. Computationally, the reduction of the datasets is done by

counting the reads in genes or finding genome variants. The re-

sulting count tables or variant lists are then much smaller than

the original BAM files and in most cases can be processed in

memory. However, aggregation and summarization always result

in the loss of information on such phenomena as novel expres-

sion regions, alternative splicing or low coverage areas.

Sequencing can pinpoint various properties of genomes and tran-

scriptomes (Frazee et al., 2014; Le�sniewska and Okoniewski,

2011) with a nucleotide precision, but often the size of datasets

is prohibitive to study such details. The nucleotide-level analysis

can be a driving force for the many new and additional applica-

tions of sequencing such as linc-RNA discovery, verification of

gene and UTR boundaries in the species with imprecise annota-

tion or studies of alternative splicing.

The developments in computer science, especially in the area

of distributed and cloud computing, are trying to keep pace with

the rapidly growing amount of experimental data. There are sev-

eral applications already available (Langmead et al., 2010;

Schumacher et al., 2014; Taylor, 2010). Currently there are

many initiatives within the IT and bioinformatics community

that can be used for creating a useful and scalable system for

sequencing data analysis. One of the most frequently used par-

allel and distributed programming models is MapReduce, which

has its open-source implementation—Apache Hadoop

(Borthakur, 2007). As initially it was not possible to analyze

NGS data stored in Hadoop Distributed File System (HDFS)

without conversion to file formats supported by Apache

Hadoop, a library Hadoop-BAM was developed for direct

access and manipulation of formats commonly used in bioinfor-

matics: Binary Alignment/Map format (BAM), FASTQ and

Variant Call format (VCF) (Niemenmaa et al., 2012).
Many analytical tools that process data within the Hadoop

ecosystem have been developed recently in the open-source

community: new high-level languages, database engines and ap-

plication frameworks. They use the same Apache Hadoop exe-

cution model, primarily designed and optimized for one-pass

batch processing of on-disk data but not for interactive and in-

memory ad hoc data exploration. A good example of the success-

ful combination of Hadoop-BAM and the Apache Pig language

is SeqPig, an extension for processing of sequencing data

(Schumacher et al., 2014) similar to standard samtools

(Li et al., 2009). However, using high-level dataflow languages

such as Apache Pig has one drawback: in many cases, data pro-

cessing with them is far from optimal, as it is harder to do fine-

grained code optimizations.*To whom correspondence should be addressed.

2652 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/18/2652/2475607 by guest on 01 M
ay 2021

79

A completely new MapReduce paradigm implementation,
Apache Spark (Zaharia et al., 2012), addresses both of those
problems. It introduces a new Application Programming
Interface (API), suitable for both high-level data processing

workflow definition as well as low-level code tuning, using the
concise Scala language. Apache Spark includes also a new stor-
age primitive: resilient distributed datasets. It lets the users cache

precomputed data in memory and/or disk across queries. Apache
Spark has also much lower launching overheads, which is im-
portant for running ad hoc queries. Another advantage of

Apache Spark is its REPL (read-eval-print-loop) environment:
Spark-shell.
To study the utility of Apache Spark in the genomic context,

we created SparkSeq. SparkSeq is a general-purpose tool for
RNA and DNA sequencing analyses, tuned for processing in
the cloud big alignment data with nucleotide precision. It com-
bines Picard Java Development Kit for Sequence Alignment/

Map format (SAM) (Picard SAM JDK) via Hadoop-BAM li-
brary and Apache Spark to introduce versatile sequencing ana-
lyses in MapReduce environment. It currently implements

operations on many alignment files at a time, falling into three
categories: filtering of reads, summarizing genomic features and
statistical analyses. It can be run directly with Scala, or in R

using the RSparkSeq package. The scalability study done with
the prototype has proven that by using big enough computa-
tional infrastructure, it is possible to handle the constantly grow-
ing number of alignment files with base-pair resolution in a

manageable time. Much shorter processing time due to scalabil-
ity can lead to more interactive analysis with a deeper biological
insight for the genomics researchers. The computing infrastruc-

ture for the tests included cluster nodes equipped with 8-core
CPU and 16 GB RAM running Linux Ubuntu 12.04 virtual
machines with Apache Hadoop 1.2.1, Apache Spark 0.8.0 and

Scala 2.9.3 installed. Scalability and performance has been eval-
uated by increasing the number of worker nodes from 1 to 10 (8
to 80 cores in total) and comparing this with samtools and

SeqPig on the coverage/pileup function of a multi-sample data-
set. In separate tests, such parameters as HDFS block size and
the use of caching have been examined to find the optimal pro-
cessing time. Implemented analysis pipelines include the calcula-

tion of read coverage for all the nucleotides in the reference
genome and the counts of reads within all exons, that can be
processed then by the standard statistical methods for RNA

sequencing (Anders et al., 2013). Testing of SparkSeq has been
done mainly using two datasets: one 30GB BAM file from mul-
tiple-amplicon sequencing experiment and 32 BAM files

(�40GB) from a whole-transcript RNA-sequencing experiment.
The results presented in Figure 1 show that SparkSeq outper-

forms SeqPig in terms of speed (8.4–9.15 times) and that finding
the coverage for all the nucleotides scales up well. The cache

experiments described in detail in the Supplementary File show
that using a fast data serializer (like KryoSerializer) instead of
the Java built-in one together with LZF or Snappy compression

can speed up multi-pass data querying up to 110 times and
reduce memory consumption by a factor of 13. HDFS block
size adjustment can also result in a performance boost.

The tests done on SparkSeq clearly prove the utility of Apache
Spark/Hadoop-BAM-based solution for high-performance ana-
lysis of sequencing alignment files. The efficiency is comparable

with standards (samtools) on a standalone machine and it offers

the added value of horizontal scalability. Similar implementa-

tions can be done for other types of analyses and other type of

genomic alignment files. The benefit for biology researchers will

be the speeding up of the long analyses and getting even the

nucleotide precision of multi-sample results in non-prohibitive

time. This will enable unsupervised searches for novel genomics

phenomena in many samples in parallel, as well as optimizing

standard analyses by running them many times, tuning their par-

ameters in an interactive way.

ACKNOWLEDGEMENTS

The authors thank Christian Panse, Riccardo Murri, Tyanko

Aleksiev and Martin Ryan for the valuable discussions.

Funding: Scientific Exchange Programme NMS-CH (grant no.

12.289) and in part by the Swiss National Science Foundation

(grant 310000–116502).

Conflicts of Interest: none declared.

REFERENCES

Anders,S. et al. (2013) Count-based differential expression analysis of RNA sequen-

cing data using R and Bioconductor. Nat. Protoc., 8, 1765–1786.

Borthakur,D. (2007) The Hadoop Distributed File System: Architecture and Design.

Hadoop Project Website 11 (2007): 21.

Frazee,A.C. et al. (2014) Differential expression analysis of RNA-seq data at single-

base resolution. Biostatistics, 15, 413–426.

Langmead,B. et al. (2010) Cloud-scale RNA-sequencing differential expression ana-

lysis with Myrna. Genome Biol., 11, R83.

Le�sniewska,A. and Okoniewski,M.J. (2011) rnaSeqMap: a Bioconductor package

for RNA sequencing data exploration. BMC Bioinformatics, 12, 200.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Niemenmaa,M. et al. (2012) Hadoop-BAM: directly manipulating next generation

sequencing data in the cloud. Bioinformatics, 28, 876–877.

Schumacher,A. et al. (2014) Seqpig: simple and scalable scripting for large sequen-

cing data sets in hadoop. Bioinformatics, 30, 119–120.

Taylor,R.C. (2010) An overview of the Hadoop/MapReduce/HBase framework

and its current applications in bioinformatics. BMC Bioinformatics, 11

(Suppl. 12), S1.

Zaharia,M. et al. (2012) Resilient distributed datasets: a fault-tolerant abstraction

for in-memory cluster computing. In: Proceedings of the 9th USENIX

Conference. San Jose.

A B

Fig. 1. Speedup (A) and scalability (B) of SparkSeq and SeqPig on

8BAM files RNA-sequencing dataset (total 9GB) and a different

number of worker nodes. The benchmark consists of the filtering out

duplicates and reads with low quality or gaps in CIGAR string, then

calculating the coverage/pileup for all the samples. samtools used as a

baseline

2653

SparkSeq

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/18/2652/2475607 by guest on 01 M
ay 2021

80

SparkSeq - a fast, scalable, cloud-ready tool for interactive genomics

data analysis with nucleotide precision

Supplementary material

April 18, 2014

Contents

1 Performance comparison of samtools, SeqPig and SparkSeq 2
1.1 Tests description . 2
1.2 Software versions . 3
1.3 Hardware infrastructure . 3
1.4 Apache Hadoop, Pig and Spark parameters . 4
1.5 Code listings test 1 . 4

1.5.1 samtools . 4
1.5.2 SparkSeq . 5
1.5.3 SeqPig . 5

1.6 Test 1 results . 5
1.7 Code listings test 2 . 5

1.7.1 samtools . 5
1.7.2 SparkSeq . 6
1.7.3 SeqPig . 6

1.8 Test 2 results . 6
1.9 Code listings test 3 . 6

1.9.1 samtools . 6
1.9.2 SparkSeq . 7
1.9.3 SeqPig . 7

1.10 Test 3 results . 7
1.11 Code listings test 4 . 7

1.11.1 samtools . 7
1.11.2 SparkSeq . 7
1.11.3 SeqPig . 7

1.12 Test 4 results . 8
1.13 Tests results discussion . 8

2 HDFS block size evaluation 9

3 SparkSeq scalability 9

4 SparkSeq cache strategies evaluation 9

5 Comparison of samtools, SeqPig and SparkSeq features 10

6 Getting started with SparkSeq 12
6.1 Dependencies . 12
6.2 Installation . 12
6.3 Basics . 12
6.4 Project documentation . 13

1

81

7 Multisample analyses tutorial 13
7.1 Creating SparkSeqAnalysis object . 14
7.2 Counting and displaying . 14
7.3 Sorting . 15
7.4 Filtering . 16

7.4.1 Filter and undo . 16
7.4.2 Quality filtering . 16

7.4.2.1 Using base-pair qualities . 16
7.4.2.2 Using the alignment quality . 16

7.4.3 Filtering with the alignment and reference names . 16
7.4.4 Filtering on read name and length . 17
7.4.5 Filtering on CIGAR Strings . 17
7.4.6 Filtering using the alignment (SAM) flags . 17
7.4.7 Combining filters . 17
7.4.8 Generic filter . 18
7.4.9 Selecting samples . 18

7.5 Computing the coverage function and counts of reads in genomic regions 18
7.5.1 Nucleotide-level coverage function . 18
7.5.2 Exon-level counts . 19
7.5.3 Gene-level counts . 19

7.6 Grouping . 19
7.7 Joining multpile SparkSeqAnalysis objects . 20

7.7.1 Full outer join . 20
7.7.2 Inner join . 21

7.8 Junction reads analysis . 21
7.9 Using cache . 22
7.10 Saving results . 23
7.11 Setting up complete data processing pipelines . 23
7.12 Optimization hints . 24

8 RSparkSeq 25
8.1 Introduction . 25
8.2 Installation instructions . 25
8.3 Getting started . 26

8.3.1 Establishing connection to SparkSeq . 26
8.3.2 Creating RSparkSeqAnalysis object . 26
8.3.3 Computing feature counts . 26

8.3.3.1 Genes . 26
8.3.3.2 Exons . 26

A Data sets used in tests 27
A.1 RNA-sequencing experiment . 27
A.2 Multi-amplicon experiment . 27

B Additional literature 28

1 Performance comparison of samtools, SeqPig and SparkSeq

1.1 Tests description

In order to compare performance of SeqPig and SparkSeq with samtools 4 test were conducted on 2 large BAM
files (12GB and 30GB) and one dataset containing 8 samples (9GB in total, BAM files from ./Fam1/Case

directory A.1):

• Test 1 - filter out reads using 4 conditions, compute base coverage for 8 samples at once and construct
,,coverage vector“ for each position, e.g. for chr1,67086 it would the following vector: (6, 13, 3, 6, 8, 8, 8, 8)
where each value corresponds to base coverage in a sample for a given genome position. Test 1 was the
most compound case (combination of test 2 and 4 – base coverage computation and filtering reads) that
can be considered as an indicator of how well the tools perform in the close to real cases of multiple BAM
files queries (Figure 1). Sample output of all 4 methods:

– Samtools: chr1:67086 8 8 6 13 3 8 8 6

2

82

– SeqPig: chr1 67086 (8),(6),(8),(6),(3),(13),(8),(8)

– SparkSeq: ((chr1,67086),ArrayBuffer(6, 13, 3, 6, 8, 8, 8, 8))

SeqPig’s ReadPileup and BinReadPileup implementations are not yet tested enough and it was not possible
to run them using whole datasets since the following errors were reported:

– ReadPileup Caught error from UDF: fi.aalto.seqpig.pileup.ReadPileup [BUG or bad data?? Could
not find matching MD deletion after finding CIGAR deletion!]

– BinReadPileup ERROR org.apache.pig.tools.pigstats.SimplePigStats - ERROR: Unexpected data
type [I found in stream. Note only standard Pig type is supported when you output from UD-
F/LoadFunc]

Besides, according to the preliminary tests coverage computations done using SeqPig ReadRefPositions was
approximately 10% faster than analogous ones using ReadPileup. The only drawback og ReadRefPositions
implementation is that it does not support correct CIGAR srings parsing and this is why it was decided
to run the tests using only reads that were aligned to only one region without any INDELS or gaps (i.e.
CIGAR == ’101M’).

• Test 2 - compute base coverage for all genome coordinates (Figure 2);

• Test 3 - calculate the total number of short reads in a BAM file without any filtering (Figure 3);

• Test 4 - calculate the number of short reads in a BAM file that were mapped, were not duplicates and
have mapping quality greater than 19 (Figure 4);

In the tests 2-4 performance and speedup were compared to the computation time of samtools (one node, single
thread) which was the baseline. In the case of 1st test samtools processing pipeline consisted of 3 samtools
processes, 2 awk processes and 1 lzop processes executing in parallel - this could be compared to running an
6-thread application.

1.2 Software versions

• Operating system: Linux Ubuntu 12.04 LTS

• JDK: OpenJDK 64-Bit 1.6.0 27

• Scala: 2.9.3

• Apache Hadoop: 1.2.1

• Apache Pig: 0.11.1

• SeqPig: 0.5

• Hadoop-BAM: 0.6

• Apache Spark: 0.8.0

• samtools: 0.1.19 (single-threaded)

• Elasticluster 1.0.3 (a user-friendly command line tool to create, manage and setup computing clusters
hosted on cloud infrastructures, http://gc3-uzh-ch.github.io/elasticluster/)

• hadoop-lzo 0.4.20-SNAPSHOT https://github.com/twitter/hadoop-lzo (in the 1st test case)

1.3 Hardware infrastructure

Tests were run on IaaS cloud provided by Grid Computing Competence Center at University of Zurich (http:
//www.gc3.uzh.ch/). Each of the instances used in the test was of m1.xlarge flavour (8CPUs and 16GB RAM).
The HDFS file system used the node-local disk space. Compute nodes were equipped with a 1Gbit/s Ethernet
interfaces, and the network backbone run at 10Gbit/s.

3

83

1.4 Apache Hadoop, Pig and Spark parameters

In all the tests we set the following Apache Hadoop parameters:

• dfs.block.size = 64MB (default)

• mapred.tasktracker.map.tasks.maximum = 8

• mapred.tasktracker.reduce.tasks.maximum = 4

• mapred.child.java.opts = -Xmx1536m

In all the tests we set the following Apache Spark parameters:

• spark.executor.memory = 10g

• spark.rdd.compress = true

• mapred.spark.serializer = org.apache.spark.serializer.KryoSerializer1

In all the tests we set the following Apache Pig parameters:

• pig.exec.mapPartAgg = true;

• pig.exec.mapPartAgg.minReduction = 5;

• pig.schematuple = on;

In the test 4 we have turned on lzo compression for intermediate job results in Pig which due LZO’s licence
(GPL) is incompatible with that of Hadoop (Apache) and therefore it cannot be bundled with it. It was built
from source separately on the cluster and the following parameters was additionally set:

• pig.tmpfilecompression true

• pig.tmpfilecompression.codec lzo

Also the samtools/Unix scripts used lzo compression to store intermediate results between computing coverage
separately for each sample and joining the results. It was the test in which SeqPig could benefit the most from
the compression of the intermediate results as the processing consisted of 2 MapReduce jobs. After running a few
tests it was decided not to set parameters turning on data compression between the mapper and the reducer
(which is suggested SeqPig Authors), since using gzip codec slowed down data processing by approximately
15%:

1 SET mapred.compress.map.output true
2 SET mapred.output.compression.codec org.apache.hadoop.io.compress.GzipCodec

1.5 Code listings test 1

1.5.1 samtools

1 time for f in *.bam ; do samtools view -q 19 -F 260 -h $f | awk ’($6 ~/101M/)|| ($1 ~ /^@/)’ |
2 samtools view -bS - | samtools mpileup - | awk ’{print $1":"$2"\t"$4}’ |lzop > ${f%.*}.lzo ;done
3

4 time join -i -a 1 -a 2 <(lzop -d < Sample_25_sort.lzo |sort -f) <(lzop -d < Sample_38_sort.lzo|sort -f) |
5 join -i -a 1 -a 2 - <(lzop -d < Sample_39_sort.lzo|sort -f) |
6 join -i -a 1 -a 2 - <(lzop -d < Sample_42_sort.lzo|sort -f) |
7 join -i -a 1 -a 2 - <(lzop -d < Sample_44_sort.lzo|sort -f) |
8 join -i -a 1 -a 2 - <(lzop -d < Sample_45_sort.lzo|sort -f) |
9 join -i -a 1 -a 2 - <(lzop -d < Sample_47_sort.lzo|sort -f) |

10 join -i -a 1 -a 2 - <(lzop -d < Sample_53_sort.lzo|sort -f) >cov_vectors.txt

1Kryo is a fast and efficient object graph serialization framework for Java (https://github.com/EsotericSoftware/kryo)

4

84

1.5.2 SparkSeq

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 import pl.elka.pw.sparkseq.util.SparkSeqRegType
4 import org.apache.spark.storage.StorageLevel
5

6 val rootPath = "hdfs://hadoop-name001:9000/RAO/"
7 val fileSplitSize = 64
8 val pathFam1 = rootPath+fileSplitSize.toString+"MB/condition_9/Fam1"
9 val caseIdFam1 = Array(38,39,42,44,45,47,53)

10 val testSuff = "_sort.bam"
11 val seqAnalysisCase = new SparkSeqAnalysis(sc, pathFam1 + "/Case/Sample_25" + testSuff, 25, 1, 8)
12 for (i <- caseIdFam1) {
13 val path = pathFam1 + "/Case/Sample_" + i.toString + testSuff
14 seqAnalysisCase.addBAM(sc, path, i, 1)
15 }
16 seqAnalysisCase.filterDuplicateReadFlag(_ == false)
17 seqAnalysisCase.filterUnmappedFlag(_ == false)
18 seqAnalysisCase.filterMappingQuality(_ > 19)
19 seqAnalysisCase.filterCigarString(_ == "101M")
20 val baseCov = seqAnalysisCase.getCoverageBase()
21 val groupBaseCov = baseCov.map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2))
22 .groupByKey()
23 .map(r=>((SparkSeqConversions.idToCoordinates(r._1),r._2)))
24 groupBaseCov.saveAsTextFile("hdfs://hadoop-name001:9000/seqpig/sparkseq2.txt")

1.5.3 SeqPig

1 SET default_parallel $parallel

2 SET pig.exec.mapPartAgg true;

3 SET pig.exec.mapPartAgg.minReduction 5;

4 SET pig.schematuple on;

5 SET pig.tmpfilecompression true

6 SET pig.tmpfilecompression.codec lzo

7

8 DEFINE ReadUnmapped SAMFlagsFilter(’HasSegmentUnmapped’);

9 DEFINE IsDuplicate fi.aalto.seqpig.filter.SAMFlagsFilter(’IsDuplicate’);

10

11 S25 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_25_sort.bam’ using BamLoader();

12 S25 = foreach S25 generate 25 as id,*;

13 S38 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_38_sort.bam’ using BamLoader();

14 S38 = foreach S38 generate 38 as id,*;

15 S39 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_39_sort.bam’ using BamLoader();

16 S39 = foreach S39 generate 39 as id,*;

17 S42 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_42_sort.bam’ using BamLoader();

18 S42 = foreach S42 generate 42 as id,*;

19 S44 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_44_sort.bam’ using BamLoader();

20 S44 = foreach S44 generate 44 as id,*;

21 S45 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_45_sort.bam’ using BamLoader();

22 S45 = foreach S45 generate 45 as id,*;

23 S47 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_47_sort.bam’ using BamLoader();

24 S47 = foreach S47 generate 47 as id,*;

25 S53 = load ’hdfs://hadoop-name001:9000/RAO/64MB/condition_9/Fam1/Case/Sample_53_sort.bam’ using BamLoader();

26 S53 = foreach S53 generate 53 as id,*;

27 SCASEUN= UNION S25, S38, S39, S42, S44, S45, S47, S53;

28 SCASEFILTER = FILTER SCASEUN BY not ReadUnmapped(flags) AND not IsDuplicate(flags) AND mapqual > 19 AND cigar ==’101M’;

29 SCASE = FOREACH SCASEFILTER GENERATE id, read, flags, refname, start, cigar, basequal, mapqual;

30 REFPOS = FOREACH SCASE GENERATE id,ReadRefPositions(read, flags, refname, start,

31 cigar, basequal);

32 flatset = FOREACH REFPOS GENERATE $0,flatten($1);

33 grouped = GROUP flatset BY ($0, $1, $2);

34 base_counts = FOREACH grouped GENERATE group.id, group.chr, group.pos, COUNT(flatset) as cov ;

35 grouped2 = GROUP base_counts BY ($1,$2);

36 base_counts2 = FOREACH grouped2 GENERATE group.chr, group.pos, base_counts.cov;

37 store base_counts2 into ’hdfs://hadoop-name001:9000/seqpig/input.basecounts44_21_compr_allgz’;

1.6 Test 1 results

1.7 Code listings test 2

1.7.1 samtools

5

85

1 2 3 4 5 7 10

samtools
SparkSeq
SeqPig

Speedup − 8 BAM files

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
2

4
6

8
10

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9
10

Scalability − 8 BAM files

Worker nodes
S

pe
ed

up

●

●

●

●

●

●

●

●

Theoretical
SparkSeq
SeqPig

Figure 1: Filtering out reads using 4 conditions and computing base coverage, constructing ,,coverage vector“
for each position for 8 BAM files dataset (approx. 9GB) and a different number of worker nodes with samtools,
SeqPig and SparkSeq. Speedup SparkSeq vs SeqPig: 8.40 up to 9.15

1 samtools mpileup allBig.bam |awk ’{print $1":"$2":"$4}’ > allBig.txt

1.7.2 SparkSeq

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 val seqAnalysis = new SparkSeqAnalysis(sc,
3 "hdfs://hadoop-name001:9000//seqpig/allBig.bam",1,1,1)
4 val out=seqAnalysis.getCoverageBase()
5 out.saveAsTextFile("hdfs://hadoop-name001:9000//seqpig/out1_1.txt")

1.7.3 SeqPig

1 set pig.exec.mapPartAgg true;
2 set pig.exec.mapPartAgg.minReduction 5;
3 set pig.schematuple on;
4 DEFINE ReadUnmapped SAMFlagsFilter(’HasSegmentUnmapped’);
5 A = load ’hdfs://hadoop-name001:9000//seqpig/allBig.bam’ using BamLoader(’yes’);
6 A = FOREACH A GENERATE read, flags, refname, start, cigar, basequal, mapqual;
7 A = FILTER A BY not ReadUnmapped(flags);
8 RefPos = FOREACH A GENERATE ReadRefPositions(read, flags, refname, start,
9 cigar, basequal), mapqual;

10 flatset = FOREACH RefPos GENERATE flatten($0);
11 grouped = GROUP flatset BY ($0, $1);
12 base_counts = FOREACH grouped GENERATE group.chr, group.pos, COUNT(flatset);
13 store base_counts into ’hdfs://hadoop-name001:9000//seqpig/input.basecounts1_1’;

1.8 Test 2 results

1.9 Code listings test 3

1.9.1 samtools

1 samtools view -c allBig.bam

6

86

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 12GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
5

10
15

20
25

30

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 30GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
5

10
15

20
25

30

Figure 2: Computing of base level coverage for an approx. 12 and 30GB BAM files dataset and a different
number of worker nodes with samtools, SeqPig and SparkSeq. Comparative speedup SparkSeq vs SeqPig: 12.02
up to 22.61 for 30GB dataset, and 14.04 up to 21.66 for 12GB dataset.

1.9.2 SparkSeq

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 val seqAnalysis = new SparkSeqAnalysis(sc,
3 "hdfs://hadoop-name001:9000//seqpig/allBig.bam",1,1,1)
4 seqAnalysis.bamFile.map(r=>r._2).count()

1.9.3 SeqPig

1 set pig.exec.mapPartAgg true;
2 set pig.exec.mapPartAgg.minReduction 5;
3 set pig.schematuple on;
4 A = load ’hdfs://hadoop-name001:9000//seqpig/allBig.bam’ using BamLoader(’yes’);
5 B = group A all;
6 C = foreach B generate COUNT(A);
7 dump C;

1.10 Test 3 results

1.11 Code listings test 4

1.11.1 samtools

1 samtools view -F 1028 -q 19 -c allBig.bam

1.11.2 SparkSeq

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 val seqAnalysis = new SparkSeqAnalysis(sc,
3 "hdfs://hadoop-name001:9000//seqpig/allBig.bam",1,1,1)
4 seqAnalysis.bamFile.map(r=>r._2)
5 .filter(r=> r._2.get.getReadUnmappedFlag==false &&
6 r._2.get.getDuplicateReadFlag==false && r._2.get.getMappingQuality>19).count

1.11.3 SeqPig

1 set pig.exec.mapPartAgg true;
2 set pig.exec.mapPartAgg.minReduction 5;

7

87

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 12GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
5

10
15

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 30GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
2

4
6

8
10

12
14

Figure 3: Calculating the total number of short reads for an approx. 12 and 30GB BAM files dataset and
a different number of worker nodes with samtools, SeqPig and SparkSeq. Comparative speedup SparkSeq vs
SeqPig: 3.13 up to 6.84 for 30GB dataset, and 2.92 up to 7.52 for 12GB dataset.

3 set pig.schematuple on;
4 DEFINE ReadUnmapped SAMFlagsFilter(’HasSegmentUnmapped’);
5 DEFINE IsDuplicate fi.aalto.seqpig.filter.SAMFlagsFilter(’IsDuplicate’);
6 A = load ’hdfs://hadoop-name001:9000//seqpig/allBig.bam’ using BamLoader(’yes’);
7 B = FILTER A BY not ReadUnmapped(flags) AND not IsDuplicate(flags) AND mapqual > 19;
8 C = group B all;
9 D = foreach C generate COUNT(B);

10 dump D;

1.12 Test 4 results

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 12GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
2

4
6

8
10

1 5 10 15

samtools
sparkseq
seqpig

BAM file − 30GB

worker nodes

sp
ee

du
p

vs
 s

am
to

ol
s

0
2

4
6

8
10

Figure 4: Calculating the number of short reads that are mapped, not duplicates and have mapping quality
>19 for an approx. 12 and 30GB BAM files dataset and a different number of worker nodes with samtools,
SeqPig and SparkSeq. Comparative speedup SparkSeq vs SeqPig:3.20 up to 6.87 for 30GB dataset, and 3.12
up to 6.45 for 12GB dataset.

1.13 Tests results discussion

Test 1 and 2 are clearly the most computationally intensive ones and hence are the best proofs of scalability of
SparkSeq and SegPig. In case of Test 3 and Test 4 the speedup is mostly limited by the overall IO-throughput

8

88

16MB
32MB
64MB−default
128MB
192MB

HDFS block size

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
[%

]

0
50

10
0

15
0

20
0

25
0

Figure 5: The impact of HDFS block size selection

and the fact that even computation time using one node is quite low (and the computation starting overheads
are high when compared to the total time, so the percentage of the time that can be reduced by distributed
computations is relatively low). Besides, the BAM file format uses a centralized header that may lead to block
contentions in some cases while accessed concurrently. In the Test 1 the scalability characteristic of both SeqPig
and SparkSeq on up to 7 nodes is close to linear. Than it shows below linear returns as due to the size of the
dataset some of the computing resources were not fully utilized all the time. Comparison to samtools/Unix-
based pipelines has demonstrated that SparkSeq is equally fast using a single node, and on multiple nodes offers
a very good scalability. This makes it a good choice for both types of computing : using ”domestic” hardware
(e.g. laptops, medium-size desktops) and large clusters or servers equipped with many CPUs. In all the tests
SparkSeq was significantly faster than SeqPig.

2 HDFS block size evaluation

In another round of tests the impact of HDFS block size was evaluated. It is a parameter the value of which
should be adjusted in line with throughput of the underlying storage performance. We proved that HDFS block
size selection in case of NGS data formats can also result in large performance boost — in tested hardware
infrastructure setting parameter to 128MB (instead of default 64MB) cut processing time by more than 20%
(Figure 5). This was the optimal value — increasing it further has led to serious performance decrease.

3 SparkSeq scalability

Testing of SparkSeq has been also done using 32 BAM files (approx. 40GB) from an RNA-sequencing experi-
ment. The results presented in the Figure 6 are showing that finding the coverage for all the nucleotides scales
close to linearly with the adding of the worker nodes. It shows again that computationally intensive tasks can
benefit from the MapReduce model the most. In the case of exon coverage computation, the speedup up to
4 worker nodes is very good, then it becomes I/O-bound due to the fact that non-local shared storage with a
measured throughput of approx. 800MB/s was used to store the virtual disks of all the virtual machines. This
issue could be solved by either using a more performant shared storage or by using local storage only for backing
up the disks of the virtual machines. It is also far less computationally intensive task and cluster overheads play
here a greater role. Besides, the header contentions are of less importance here, since worker processes access
concurrently 32 BAM file headers not just one as in the above comparisons.

4 SparkSeq cache strategies evaluation

Cache experiments shows clearly that using fast data serialized(like KryoSerializer) instead of Java built-in to-
gether LZF or Snappy compression can speed up multi-pass data querying up 80-110 times and reduce memory

9

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

Worker nodes

S
pe

ed
up

●

●

●

●

●

●
●

●

Theoretical
Nucleotide
Region

Figure 6: SparkSeq scalability for exon and nucleotide-level analysis

consumption approx. 13 times (Figure 7). Abbreviations used: Raw-size of Scala RDD without serialization or
data compression, MEM-memory, J-JavaSerializer, K-KryoSerializer, L-LZF Compression, S-Snappy compres-
sion, N-no serialization or no compression, e.g. MEM-K-N means in memory data cache, objects serialized with
KryoSerializer and without any compression.
SparkSeq can use the same storage level settings as Apache Spark2, by default it is MEMORY_ONLY as it seems to
be most CPU-efficient one.

5 Comparison of samtools, SeqPig and SparkSeq features

Feature samtools SeqPig SparkSeq

programming language C/shell Java/Pig Scala
vartical scalability Partial Yes Yes
horizontal scalability No Yes Yes
local/MapReduce mode Yes/No Yes/Yes Yes/Yes
control structures No Yes when embeded in Python,Grovvy,etc. Yes
Turing complete No Yes when extended with Java UDFs Yes
regular expressions Yes when used with awk,etc. Yes Yes
multisample analysis Partial Partial Yes
reads filtering Partial Yes Yes
pileup Yes Yes Partial
SNP/INDELS calling Yes No No
base coverage Yes Yes Yes
feature counts No No Yes
junctions analysis No Partial Yes

2More information can be found at http://spark.incubator.apache.org/docs/latest/scala-programming-guide.

html#rdd-persistence

10

90

MEM−N−N
MEM−J−N
MEM−K−N
MEM−J−L
MEM−J−S
MEM−K−L
MEM−K−S
DISK−J−N
DISK−K−N
DISK−J−L
DISK−J−S
DISK−K−L
DISK−K−S

cache strategies

sp
ee

du
p

vs
 n

o−
ca

ch
e

0
20

40
60

80
10

0

Raw
MEM−J−N
MEM−K−N
MEM−J−L
MEM−J−S
MEM−K−L
MEM−K−S

Memory cache

Memory cache strategies

si
ze

 in
 m

em
or

y
[G

B
]

0
10

20
30

40
50

Raw
DISK−J−N
DISK−K−N
DISK−J−L
DISK−J−S
DISK−K−L
DISK−K−S

Disk cache

Disk cache strategies

si
ze

 o
n

di
sk

 [G
B

]

0
10

20
30

40
50

Figure 7: Apache Spark cache strategies comparison

11

91

6 Getting started with SparkSeq

Currently the only supported operating systems are Linux 64bit and Mac OS X.

6.1 Dependencies

In order to build SparkSeq you need to have the following dependencies installed:

• Java Virtual Machine >= 1.6

• Scala compiler >=2.10

• SBT - Simple Build Tool

• Apache Spark >=0.9.0

the rest of dependencies will be automatically downloaded by sbt during the build process.

6.2 Installation

1. If you are using development Apache Spark version that is not available via Maven repositories
you need to publish compiled Jars to your local repository:

1 cd ${SPARK_HOME}
2 sbt/sbt publish-local

2. Clone the most recent version from Bitbucket repository:

1 git clone https://bitbucket.org/mwiewiorka/sparkseq.git
2 cd sparkseq

3. If you also wish to read data from Hadoop’s HDFS, you will also need to edit build.sbt file (from
sparkseq-core directory) and choose hadoop-client for your version of HDFS, e.g. if you would like to use
version 1.2.1, the configuration should be like this:

1 val DEFAULT_HADOOP_VERSION = "1.2.1"

Please make sure that you use the same version of hadoop-client library for building Apache Spark and
SparkSeq. Here you can find some information on how to configure this in Apache Spark.

4.Build SparkSeq

1 sbt package

5.Run unit test

1 sbt test

If all tests are passed you are ready to go:-)!

6.3 Basics

The simplest way to work with SparkSeq is to use Apache Spark’s interactive shell. Before launching you
should add paths to SparkSeq jarfile and its dependencies to ADD JARS, SPARK CLASSPATH and
SPARK JAVA OPTS environment variables, e.g.(using Bash syntax):

1 export ADD_JARS="${ADD_JARS},/opt/hadoop-classpath/hadoop-bam-6.1-SNAPSHOT.jar,/opt/hadoop-classpath/picard-1.93.jar,

2 /opt/hadoop-classpath/sam-1.93.jar,/opt/hadoop-classpath/variant-1.93.jar,/opt/hadoop-classpath/tribble-1.93.jar,

3 /opt/hadoop-classpath/commons-jexl-2.1.1.jar,/opt/hadoop-classpath/sparkseq_2.10-0.1.jar"

4

5 export SPARK_CLASSPATH="${SPARK_CLASSPATH}:/opt/scala-2.10.3/lib/scala-library.jar:/opt/scala-2.10.3/lib/scala-compiler.jar:

6 /opt/hadoop-classpath/hadoop-bam-6.1-SNAPSHOT.jar:/opt/hadoop-classpath/picard-1.93.jar:/opt/hadoop-classpath/sam-1.93.jar:

7 /opt/hadoop-classpath/variant-1.93.jar:/opt/hadoop-classpath/tribble-1.93.jar:/opt/hadoop-classpath/commons-jexl-2.1.1.jar:

12

92

8 /opt/hadoop-classpath/sparkseq_2.10-0.1.jar"

9

10 export SPARK_JAVA_OPTS="-Dspark.rdd.compress=true -Dspark.serializer=org.apache.spark.serializer.KryoSerializer

11 -Dspark.kryoserializer.buffer.mb=25"

Now you can start Apache Spark’s REPL locally by e.g. typing:

1 cd ${SPARK_HOME}/bin
2 MASTER=local[4] SPARK_MEM=4g ./spark-shell

If you have your Apache Spark cluster up and running then you need to set only the MASTER variable
to URI of your Apache Spark master node in the cluster.

At that point you can run your first analysis with SparkSeq using Apache Spark’s REPL-calculate, to
compute how many nucleotides in a BAM file have read coverage greater or equal to 10:

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 val seqAnalysis = new SparkSeqAnalysis(sc,"pathToYourBAM",1,1,1)
3 seqAnalysis.getCoverageBase().filter(p=>(p._2>=10)).count()

Saving results to a text file, e.g.:
For more information on available data transformations (like map, groupByKey, etc.) and actions please

consult:
Apache Spark’s Documentation.

6.4 Project documentation

Latest version of code examples, Windows Azure cloud deployment guide, Ansible3 playbooks to automate
prerequisites installation and API documentation can be found on the project’s wiki (https://bitbucket.
org/mwiewiorka/sparkseq/wiki/Home)

7 Multisample analyses tutorial

This tutorial presents how to perform various operations on your BAM files using SparkSeq.
We assume that you have the following components of your system up and running:

• Apache Spark cluster (either in standalone mode or using resource manager like Mesos or YARN) or
Apache Spark local mode (More info here)

• SparkSeq compiled or downloaded from the unofficial Maven repository (please pay attention to HDFS ver-
sion compatibility) and appropriate variables added to SPARK CLASSPATH, ADD JARS and SPARK JAVA OPTS
environment (More info here)

• Apache Spark’s REPL connected to a cluster or ran locally (More info here)

• HDFS NameNode(s) and DataNode(s)

This tutorial uses an RNA sequencing dataset with alignments limited to the chromosome Y, freely available
at DERFinder’s github. It should be copied this dataset to our local Hadoop cluster and form the following
directory structure:

1 spark@sparkseq:/sandbox$ hadoop fs -lsr /BAM/64MB/derfinder/chrom_Y | cut -c61-
2

3 /BAM/64MB/derfinder/chrom_Y/F
4 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF23_Y.bam
5 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF2_Y.bam
6 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF33_Y.bam
7 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF40_Y.bam
8 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF55_Y.bam
9 /BAM/64MB/derfinder/chem_Y/F/orbFrontalF56_Y.bam

10 /BAM/64MB/derfinder/chrom_Y/M
11 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF11_Y.bam

3https://github.com/ansible/ansible

13

93

12 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam
13 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF32_Y.bam
14 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF3_Y.bam
15 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF42_Y.bam
16 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF43_Y.bam
17 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF47_Y.bam
18 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF53_Y.bam
19 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF58_Y.bam

Yet another directory should be created for storing various BED files that can be downloaded from the
project’s page:

1 spark@sparkseq:/sandbox$ hadoop fs -lsr /BAM/64MB/aux | cut -c61-
2

3 /BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_merged_id_st.bed
4 /BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_sort_uniq.bed
5 /BAM/64MB/aux/Homo_sapiens.GRCh37.74_genes_chr_merged_swap.bed

If you are not sure what the SparkSeq’s syntax is, you can always find more information at
http://mwiewiorka.bitbucket.org/#package

7.1 Creating SparkSeqAnalysis object

The most important SparkSeq’s class for performing multisample analyses is SparkSeqAnalysis.
An object of this class stores all the information about the samples and references them.
It features a simple API and together with Apache Spark’s transformations make SparkSeq a powerful yet easy
tool for RNA/DNA analyses.

So let’s create a SparkSeqAnalysis object and attach all the BAM files from
/BAM/64MB/derfinder/chrom Y/M/ directory. We first initialize an object using the first sample and the rest
of them we can very easily add using addBAM method. Let’s run Apache Spark’s REPL and set the maximum
memory per worker machine to 2GB (as the default 512MB may be insufficient in some cases):

1 spark@sparkseq:~/spark-0.9.0-incubating/bin$ SPARK_MEM=2g ./spark-shell

and then create a SparkSeqAnalysis object:

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 import pl.elka.pw.sparkseq.util.SparkSeqRegType._
4

5 val seqAnalysis = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1)
6 val caseId = Array(11, 32, 3, 42, 43, 47, 53, 58)
7 for(i<-caseId)
8 seqAnalysis.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF"+i.toString+"_Y.bam",i,1)

Then we can list all the samples has been attached using listSamples method:

1 scala> seqAnalysis.listSamples()
2 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam
3 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF11_Y.bam
4 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF32_Y.bam
5 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF3_Y.bam
6 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF42_Y.bam
7 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF43_Y.bam
8 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF47_Y.bam
9 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF53_Y.bam

10 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF58_Y.bam

7.2 Counting and displaying

Let’s start with some easy counting of samples and reads. We will use getSamples method to obtain all samples,
getReads to get all reads and getSampleReads(11) to get all reads from the sample ‘11’:

14

94

1 scala> seqAnalysis.getSamples.count
2 res2: Long = 9
3

4 scala> seqAnalysis.getReads.count
5 res3: Long = 925231
6

7 scala> seqAnalysis.getSampleReads(11).count
8 res5: Long = 120493

To get all reads info in a way similar to samtools view (first 5 reads):

1 scala> seqAnalysis.viewSampleReads(11,5)

2

3 011211_fcA_:6:1102:10430:158969:0:1 16 Y 2655174 50 100M * 0 0

4

5 011211_fcA_:6:1308:17172:193560:0:1 16 Y 2658568 50 100M * 0 0

6

7 011211_fcA_:6:2201:7222:62493:0:1 16 Y 2658568 50 100M * 0 0

8

9 011211_fcA_:6:2202:14432:150553:0:1 16 Y 2658568 50 100M * 0 0

10

11 011211_fcA_:6:1301:11508:181776:0:1 272 Y 2675692 3 100M * 0 0

To get the read sequence only you may combine the methods in a following way:

1 scala> seqAnalysis.getSampleReads(11).take(5).map(r=> r._2.getReadString).foreach(println)
2

3 CACTTCGCTGCAGAGTACCGAAGCGGGATCTGCGGGAAGCAAACTGCAATTCTTCGGCAGCATCTTCGCCTTCCGACGAGGTCGATACTTATAATTCGGG
4 CTCCCAGATGCATATATTACAGGACGGGGTGTGTGAGGAGACTCACTTGGGGGTGGCAGTCAACAAAATTTAAATAAAGACACGAGATTTTATTATTTTT
5 CTCCCAGATGCATATATTACAGGACGGGGTGTGTGAGGAGACTCACTTGGGGGTGGCAGTCAACAAAATTTAAATAAAGACACGAGATTTTATTATTTTT
6 CTCCCAGATGCATATATTACAGGACGGGGTGTGTGAGGAGACTCACTTGGGGGTGGCAGTCAACAAAATTTAAATAAAGACACGAGATTTTATTATTTTT
7 GAATGCTTCCAGTTTTTGCCCATTCAGTATGATATTGGCTGTGGGTTTGTTATAAATAGCTCTTATTTTGAAATACATTCCATCAATACCTAGTTTATTG

To get the average read length of all reads from all samples:

1 scala> seqAnalysis.getAvgReadLength
2 res1: Double = 100.45402715646146

7.3 Sorting

The following command can be used to sort all reads from all samples by sampleID and alignment start and
then display the first 5 reads:

1 scala> seqAnalysis.sortReadsByAlign().take(5).foreach(println)
2

3 ((1,(chrY,2675709)),300811_fcB_:1:1108:2837:104706:0:1 101b aligned read.)
4 ((1,(chrY,2675709)),300811_fcB_:1:2101:14014:45631:0:1 101b aligned read.)
5 ((1,(chrY,2675754)),300811_fcB_:1:1305:7608:74961:0:1 101b aligned read.)
6 ((1,(chrY,2675923)),300811_fcB_:1:2304:9858:81704:0:1 101b aligned read.)
7 ((1,(chrY,2676173)),300811_fcB_:1:2303:10751:139532:0:1 101b aligned read.)

To sort the reads from a specific sample by alignment start:

1 scala> seqAnalysis.sortSampleReadsByAlign(11).take(5).foreach(println)
2

3 ((11,(chrY,2655174)),011211_fcA_:6:1102:10430:158969:0:1 100b aligned read.)
4 ((11,(chrY,2658568)),011211_fcA_:6:1308:17172:193560:0:1 100b aligned read.)
5 ((11,(chrY,2658568)),011211_fcA_:6:2201:7222:62493:0:1 100b aligned read.)
6 ((11,(chrY,2658568)),011211_fcA_:6:2202:14432:150553:0:1 100b aligned read.)
7 ((11,(chrY,2675692)),011211_fcA_:6:1301:11508:181776:0:1 100b aligned read.)

To implement custom sorting, e.g. to find reads with the greatest number of CIGAR operators (i.e. to sort
descending by CIGARString length):

15

95

1 scala> seqAnalysis.getSampleReads(11)
2 .map(r=>(r._2.getCigarLength,(r._2.getCigarString,r._2.getReadName)))
3 .sortByKey(false)
4 .take(5)
5 .foreach(println)
6

7 (11,(73M1I6M2D2M1I6M1D4M1I6M,011211_fcA_:6:1201:20258:60417:0:1))
8 (11,(73M1I6M2D2M1I6M1D4M1I6M,011211_fcA_:6:1201:8410:133984:0:1))
9 (11,(73M1I6M2D2M1I6M1D4M1I6M,011211_fcA_:6:1208:14033:185503:0:1))

10 (11,(73M1I6M2D2M1I6M1D4M1I6M,011211_fcA_:6:2104:3708:73930:0:1))
11 (11,(73M1I6M2D2M1I6M1D4M1I6M,011211_fcA_:6:2206:9709:108114:0:1))

7.4 Filtering

7.4.1 Filter and undo

SparkSeqAnalysis class provides a great range of methods that can facilitate process of filtering out reads that
do not meet our requirements. All filters follow lazy evaluation principle - they are not executed until they are
really needed (so until some of Apache Spark’s actions such as count, reduce, collect, etc is not called).
Filters can be combined by calling one method after another, similarly as combining conditions using ‘logical
and’ operator. If you need more sophisticated combinations of logical operators you can use a generic filterReads
method that allows to create any conditions on sampleID and reads.
If you wish to undo all the filtering you can call undoFilter method.
Currently up to 2 conditions per method are supported. In order to set eg. 3 conditions on start of alignment
you can just call the same method twice: 1. with 2 conditions and the 2. with the remaining condition. Please
note that calling filter method for the n-th time is equivalent to combining conditions using ‘and’ operator.

7.4.2 Quality filtering

7.4.2.1 Using base-pair qualities To filter out all reads that have the mean base quality < 30:

1 import pl.elka.pw.sparkseq.statisticalTests.SparkSeqStats
2 seqAnalysis.filterBaseQualities(SparkSeqStats.mean(_)>=30).count
3 res7: Long = 925176

To filter out reads that have at least 2 base with quality < 30:

1 scala> seqAnalysis.filterBaseQualities(_.sortBy(r=>(-r)).takeRight(2).head >= 30).count
2 res9: Long = 849744

Please remember to undo all the filtering before running each example:

1 scala> seqAnalysis.undoFilter

7.4.2.2 Using the alignment quality To keep only reads with alignment quality greater or equal to 30:

1 scala> seqAnalysis.filterMappingQuality(_ >=30).count
2 res22: Long = 669871

7.4.3 Filtering with the alignment and reference names

To get only the reads that have start alignments between 2655174 and 2685880 in chrY:

1 scala> seqAnalysis.filterReferenceName(_ == "chrY")
2 scala> seqAnalysis.filterAlignmentStart(_ >= 2655174 && _ <= 2685880).count
3 res1: Long = 934

To get only the reads that are fitting into the interval [2655174,2700500] on chromosome Y:

1 scala> seqAnalysis.filterReferenceName(_ == "chrY")
2 scala> seqAnalysis.filterAlignmentStart(_ >= 2655174)
3 scala> seqAnalysis.filterAlignmentEnd(_ <= 2700500).count
4 res1: Long = 967

16

96

7.4.4 Filtering on read name and length

To get a read with a specific ID you can use the following method:

1 scala> seqAnalysis.filterReadName(_ == "011211_fcA_:6:1102:10430:158969:0:1")
2 scala> seqAnalysis.viewReads()
3 011211_fcA_:6:1102:10430:158969:0:1 16 Y 2655174 50 100M * 0 0

7.4.5 Filtering on CIGAR Strings

To get only the reads with CIGAR String equal to “100M“ and then to display 2 of them:

1 scala> seqAnalysis.filterCigarString(_ == "100M").count
2 res21: Long = 425718
3

4 scala> seqAnalysis.viewReads(2)
5 011211_fcA_:6:1102:10430:158969:0:1 16 Y 2655174 50 100M * 0 0
6

7 011211_fcA_:6:1308:17172:193560:0:1 16 Y 2658568 50 100M * 0 0

To do some more sophisticated filtering you can also take advantage of regular expressions:

1 scala> val cigRegex = "^[0-9]+M[0-9]+D[0-9]+M$".r
2 scala> seqAnalysis.filterCigarString(cigRegex.pattern.matcher(_).matches)
3 scala> seqAnalysis.viewReads(2)
4

5 300811_fcB_:1:1302:12119:168462:0:1 16 Y 2712173 50 29M1D72M * 0 0
6

7 300811_fcB_:1:2204:12824:4029:0:1 16 Y 2719503 50 27M4D74M * 0 0

7.4.6 Filtering using the alignment (SAM) flags

To filter out read duplicates (non-primary alignments) :

1 scala> seqAnalysis.filterDuplicateReadFlag(_ == false).count
2 res45: Long = 925231

To filter out unmapped reads:

1 scala> seqAnalysis.filterUnmappedFlag(_ == false).count
2 res1: Long = 925231

To filter out reads using other SAM flags (or their combinations) you can use filterFlags method
and SAM flags calculator to find the necessary
integer representation, e.g. ‘not primary alignment’= 256 :

1 scala> seqAnalysis.filterFlags(_ != 256).count
2 res4: Long = 829036

7.4.7 Combining filters

Filters methods can be combined in the the following ways: either in a single method using various logical
operators (currently up to 2 conditions supported) or by calling methods several times or by mixing both
approaches:

1 scala> seqAnalysis.filterAlignmentStart(_ >= 2655174 && _ < 2685880).count
2 res1: Long = 934
3

4 scala> seqAnalysis.undoFilter
5

6 scala> seqAnalysis.filterAlignmentStart(_ >= 2655174)
7 scala> seqAnalysis.filterAlignmentStart(_ < 2685880).count
8 s4: Long = 934

17

97

7.4.8 Generic filter

There is also a generic filter method that makes it possible to set conditions (currently up to 2)
on any BAMRecord property as well as sampleID(. 1 refers to sampleID whereas . 2 to read object):

1 scala> seqAnalysis.filterReads(_._2.getReferenceName == "Y" && _._1==1).count
2 res16: Long = 105691

Using this generic method you can implement any of the above specialized filters.

7.4.9 Selecting samples

To filter the reads from a specific sample:

1 scala> seqAnalysis.filterSample(_ == 32).count
2 res1: Long = 99955

7.5 Computing the coverage function and counts of reads in genomic regions

The coverage with reads, as a function defined on all the nucleotides of the reference genome as well as read
counts for genomic regions (e.g. exons or genes) are the typical summarizations in a sequencing experiment.

You can do this for the regions of interest, describing them in a BED-like, tab-delimited file format that
contains the following columns:

1 chr regStart regEnd strand upperRegionID regionID

where regionID must be globally unique. RegionID must contain exactly 15 character, start with letters,
end with digits and padded with zeroes.

For instance:

1 chr1 11869 12227 . ENSG00000223972 ENSE00002234944
2 chr1 11872 12227 . ENSG00000223972 ENSE00002234632
3 chr1 11874 12227 . ENSG00000223972 ENSE00002269724

Precomputed BED-like files for human genes and exons according to Ensembl can be downloaded from here.

7.5.1 Nucleotide-level coverage function

Coverage matrix is a generalization of a “coverage vector” and GenomicArray, which is explained here. It can
be computed for all the positions in all samples or for some particular regions of interest. The following listings
shows how to calculate, view (region) and save (all results):

1 scala> val baseCov = seqAnalysis.getCoverageBase()

2 scala> seqAnalysis.viewBaseCoverage("chrY",2675720,2675728)

3 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58

4 ===

5 chrY,2675720 2 2 7 0 0 19 0 0 0

6 chrY,2675721 2 2 7 0 0 19 0 0 0

7 chrY,2675722 2 2 7 0 0 19 0 0 0

8 chrY,2675723 2 2 7 0 0 19 0 0 0

9 chrY,2675724 2 2 7 0 0 19 0 0 0

10 chrY,2675725 2 2 7 0 0 19 0 0 0

11 chrY,2675726 2 2 7 0 0 19 0 0 0

12 chrY,2675727 2 2 7 3 0 19 0 0 0

13 chrY,2675728 2 2 7 3 0 19 0 0 0

14

15 scala> seqAnalysis.saveBaseCoverageToFile("test_base.txt")

If need to calculate the coverage for a specific chromosome, or a region you can run the following commands:

18

98

1 scala> seqAnalysis.getCoverageBaseRegion("chrY",2600000,2700000)

2 scala> seqAnalysis.viewBaseCoverage("chrY",2675720,2675728)

3

4 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58

5 ===

6 chrY,2675720 2 2 7 0 0 19 0 0 0

7 chrY,2675721 2 2 7 0 0 19 0 0 0

8 chrY,2675722 2 2 7 0 0 19 0 0 0

9 chrY,2675723 2 2 7 0 0 19 0 0 0

10 chrY,2675724 2 2 7 0 0 19 0 0 0

11 chrY,2675725 2 2 7 0 0 19 0 0 0

12 chrY,2675726 2 2 7 0 0 19 0 0 0

13 chrY,2675727 2 2 7 3 0 19 0 0 0

14 chrY,2675728 2 2 7 3 0 19 0 0 0

7.5.2 Exon-level counts

To calculate counts for 4 sample exons you can use getCoverageRegion method. The unionMode parameter is
analogous to ‘union’ of htseq-count.

1 scala> val genExonsMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc, "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_sort_uniq.bed"))
2 scala> seqAnalysis.getCoverageRegion(genExonsMapB, unionMode=true)
3 scala> val exonArray = Array("ENSE00000652498","ENSE00000652501","ENSE00000652502","ENSE00000652503")
4 scala> seqAnalysis.viewExonCoverage(exonArray)
5

6 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58
7 ===
8 ENSE00000652498 186 251 135 168 131 140 100 198 149
9 ENSE00000652501 148 211 136 156 130 83 140 230 171

10 ENSE00000652502 207 383 173 198 83 129 188 176 169
11 ENSE00000652503 215 384 182 265 93 136 177 161 135
12

13 scala> seqAnalysis.saveFeatureCoverageToFile("test_exon.txt",Exon)

7.5.3 Gene-level counts

To view counts for 4 sample genes you can use also getCoverageRegion method. unionMode parameter is
analogous to ‘union’ of htseq-count.

1 scala> val genesMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc, "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_genes_chr_merged_swap.bed"))
2 scala> seqAnalysis.getCoverageRegion(genesMapB, unionMode=true)
3 scala> val geneArray = Array("ENSG00000012817","ENSG00000067048","ENSG00000067646","ENSG00000092377")
4 scala> seqAnalysis.viewGeneCoverage(geneArray)
5

6 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58
7 ===
8 ENSG00000012817 8720 9103 8585 7375 5387 5835 7669 8175 7258
9 ENSG00000067048 6321 8647 5325 5598 3468 4140 4376 6827 4335

10 ENSG00000067646 1305 1419 1610 853 966 535 848 1043 920
11 ENSG00000092377 75 48 31 61 29 10 31 26 42
12

13 seqAnalysis.saveFeatureCoverageToFile("test_gene.txt",Gene)

7.6 Grouping

To get a coverage vector for a specific genome position across samples you can do the following:

1 scala> val seqBaseCov = seqAnalysis.getCoverageBaseRegion("chrY",2600000,2700000)
2 scala> seqBaseCov.map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2))
3 .groupByKey()
4 .map(r=>(SparkSeqConversions.idToCoordinates(r._1),r._2))
5 .take(10)
6 .foreach(println)
7

8 ((chrY,2658591),ArrayBuffer(3))
9 ((chrY,2677791),ArrayBuffer(10, 10, 6, 5, 4, 3, 5))

10 ((chrY,2655261),ArrayBuffer(1))
11 ((chrY,2694913),ArrayBuffer(10))
12 ((chrY,2677365),ArrayBuffer(6, 21, 5, 16, 1))
13 ((chrY,2676565),ArrayBuffer(6))
14 ((chrY,2692535),ArrayBuffer(3))
15 ((chrY,2695925),ArrayBuffer(2))

19

99

16 ((chrY,2677473),ArrayBuffer(11, 7, 24, 7, 17, 2, 8))
17 ((chrY,2686485),ArrayBuffer(1))

7.7 Joining multpile SparkSeqAnalysis objects

In this section we will show how to do joins in SparkSeq in order to define more complex analyses using multiple
SparkSeqAnalysis objects. If you are not familiar with the difference between full outer join and inner join,
please consult Wikipedia.
In the previous examples we have operated only on the male samples. To demonstrate how to operate on 2
SparkSeqAnalysis objects we will create another two for storing male and female samples separately:

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 import pl.elka.pw.sparkseq.util.SparkSeqRegType._
4

5 val seqAnalysisMale = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1)
6 val maleId = Array(11, 32, 3, 42, 43, 47, 53, 58)
7 for(i<-maleId)
8 seqAnalysisMale.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF"+i.toString+"_Y.bam",i,1)
9

10 val seqAnalysisFemale = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/F/orbFrontalF2_Y.bam",2,1,1)
11 val femaleId = Array(23, 33, 40, 55, 56)
12 for(i<-femaleId)
13 seqAnalysisFemale.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/F/orbFrontalF"+i.toString+"_Y.bam",i,1)

And a quick check if all the samples are correctly attached:

1 scala> seqAnalysisMale.listSamples
2 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam
3 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF11_Y.bam
4 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF32_Y.bam
5 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF3_Y.bam
6 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF42_Y.bam
7 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF43_Y.bam
8 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF47_Y.bam
9 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF53_Y.bam

10 /BAM/64MB/derfinder/chrom_Y/M/orbFrontalF58_Y.bam
11

12 scala> seqAnalysisFemale.listSamples
13 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF2_Y.bam
14 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF23_Y.bam
15 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF33_Y.bam
16 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF40_Y.bam
17 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF55_Y.bam
18 /BAM/64MB/derfinder/chrom_Y/F/orbFrontalF56_Y.bam
19

20 scala> seqAnalysisMale.getSamples.count
21 res7: Long = 9
22

23 scala> seqAnalysisFemale.getSamples.count
24 res8: Long = 6

Now we will do the coverage function summarization as described in the previous section on those 2 Spark-
SeqAnalysis objects separately
in order to get a coverage vector across all the samples from the group:

1 scala> val seqBaseCovMale= seqAnalysisMale.getCoverageBaseRegion("chrY",2708570,2708870)

2 .map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2)).groupByKey()

3

4 scala> val seqBaseCovFemale= seqAnalysisFemale.getCoverageBaseRegion"chrY",2708570,2708870)

5 .map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2)).groupByKey()

7.7.1 Full outer join

To join coverage vectors of males and females by position even if there is no coverage for it
in one of the groups you can use a full outer join. For position (chrY,2708650) there are no reads mapped to
this position in any female sample and this is why we get empty ArrayBuffer. The commands are as follows:

20

100

1 scala> val outerJoin = seqBaseCovMale.cogroup(seqBaseCovFemale)
2 scala> outerJoin.filter(r=>r._2._1(0).length>=3).sortByKey()
3 .map(r=>(SparkSeqConversions.idToCoordinates(r._1),r._2)).take(10).foreach(println)
4

5 ((chrY,2708650),(ArrayBuffer(ArrayBuffer(2, 12, 1)),ArrayBuffer()))
6 ((chrY,2708651),(ArrayBuffer(ArrayBuffer(2, 12, 1)),ArrayBuffer(ArrayBuffer(2))))
7 ((chrY,2708652),(ArrayBuffer(ArrayBuffer(12, 1, 2)),ArrayBuffer(ArrayBuffer(2))))
8 ((chrY,2708653),(ArrayBuffer(ArrayBuffer(1, 12, 2)),ArrayBuffer(ArrayBuffer(2))))
9 ((chrY,2708654),(ArrayBuffer(ArrayBuffer(12, 10, 1)),ArrayBuffer(ArrayBuffer(2))))

10 ((chrY,2708655),(ArrayBuffer(ArrayBuffer(10, 1, 12)),ArrayBuffer(ArrayBuffer(2))))
11 ((chrY,2708656),(ArrayBuffer(ArrayBuffer(1, 10, 12)),ArrayBuffer(ArrayBuffer(2))))
12 ((chrY,2708657),(ArrayBuffer(ArrayBuffer(10, 12, 1)),ArrayBuffer(ArrayBuffer(2))))
13 ((chrY,2708658),(ArrayBuffer(ArrayBuffer(1, 12, 1, 10)),ArrayBuffer(ArrayBuffer(2))))
14 ((chrY,2708659),(ArrayBuffer(ArrayBuffer(1, 1, 12, 4, 10)),ArrayBuffer(ArrayBuffer(2))))

7.7.2 Inner join

To join coverage vectors if and only if the both groups have at least one element in a vector for
a given genomic position you can do the inner join operation:

1 scala> val innerJoin = seqBaseCovMale.join(seqBaseCovFemale)
2 scala> innerJoin.filter(r=>r._2._2.length>=6).sortByKey()
3 .map(r=>(SparkSeqConversions.idToCoordinates(r._1),r._2)).take(10).foreach(println)
4

5 ((chrY,2708700),(ArrayBuffer(8, 7, 10, 6, 27, 1, 1, 3),ArrayBuffer(1, 4, 4, 5, 3, 4)))
6 ((chrY,2708701),(ArrayBuffer(8, 27, 7, 1, 3, 6, 12, 1),ArrayBuffer(5, 4, 4, 1, 4, 3)))
7 ((chrY,2708702),(ArrayBuffer(7, 27, 8, 1, 1, 6, 3, 12),ArrayBuffer(4, 5, 4, 4, 1, 3)))
8 ((chrY,2708703),(ArrayBuffer(12, 1, 3, 1, 27, 6, 7, 8),ArrayBuffer(4, 3, 6, 4, 4, 1)))
9 ((chrY,2708704),(ArrayBuffer(7, 27, 1, 3, 6, 12, 8, 1),ArrayBuffer(4, 6, 3, 4, 1, 5)))

10 ((chrY,2708705),(ArrayBuffer(3, 2, 27, 7, 13, 1, 6, 8),ArrayBuffer(1, 4, 4, 6, 4, 5)))
11 ((chrY,2708706),(ArrayBuffer(1, 6, 7, 13, 3, 8, 27, 2),ArrayBuffer(5, 6, 6, 4, 5, 1)))
12 ((chrY,2708707),(ArrayBuffer(27, 2, 6, 8, 13, 7, 3, 1),ArrayBuffer(4, 6, 5, 9, 5, 1)))
13 ((chrY,2708708),(ArrayBuffer(8, 7, 27, 3, 2, 1, 13, 6),ArrayBuffer(5, 4, 5, 6, 9, 1)))
14 ((chrY,2708709),(ArrayBuffer(27, 2, 8, 7, 6, 1, 13, 3),ArrayBuffer(4, 6, 9, 5, 1, 5)))

7.8 Junction reads analysis

To get junction reads count you need to initialize SparkSeqJunctionAnalysis object and pass SparkSeqAnalysis
object as an input parameter:

1 scala> import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 scala> import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 scala> import pl.elka.pw.sparkseq.util.SparkSeqRegType._
4 scala> import pl.elka.pw.sparkseq.junctions.SparkSeqJunctionAnalysis
5

6 scala> val seqAnalysis = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1)
7 scala> val caseId = Array(11, 32, 3, 42, 43, 47, 53, 58)
8 scala> for(i<-caseId)
9 seqAnalysis.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF"+i.toString+"_Y.bam",i,1)

10

11 scala> val juncAnalysis = new SparkSeqJunctionAnalysis(seqAnalysis)
12 scala> juncAnalysis.getJuncReadsCounts()
13 scala> juncAnalysis.viewJuncReadsCounts(20)
14 SampleID ChrName StartPos EndPos Count
15 ==
16 3 chrY 2722788 2733104 186
17 11 chrY 2722714 2733030 169
18 3 chrY 2722713 2733029 157
19 11 chrY 2722789 2733105 140
20 32 chrY 2710283 2712117 120
21 58 chrY 2710277 2712111 119
22 3 chrY 2710282 2712116 119
23 1 chrY 2710282 2712116 116
24 1 chrY 2733258 2734805 116
25 1 chrY 2722713 2733029 114
26 3 chrY 2733208 2734755 112
27 11 chrY 2710278 2712112 106
28 53 chrY 2710226 2712060 105
29 1 chrY 2710277 2712111 104
30 11 chrY 2710283 2712117 103
31 3 chrY 2712235 2713623 102
32 1 chrY 2722788 2733104 100
33 3 chrY 2733258 2734805 94

21

101

34 3 chrY 2713704 2722560 94
35 32 chrY 2722714 2733030 94

7.9 Using cache

If one is going to query results of computations several times, it may be a good idea to cache them in memory
or/and disk. Apache Spark provide a few caching strategies that are described in section
Apache Spark RDD persistence. Here we demonstrate using two of them and show the performance benefits.
In either case we need to follow the same procedure:

1. Mark RDD as cached and optionally choose cache storage level (using cache or persist method with storage
level as a parameter)

2. Populate the cache by running the query for the first time or by running some other Apache Spark’s action
like e.g. count

3. Do the analyses

4. Optionally purge the cache using ‘unpersist’ method

To cache results in memory:

1 scala> val seqBaseCovMale= seqAnalysisMale.getCoverageBase
2 .map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2)).groupByKey()
3 scala> val posStart = SparkSeqConversions.chrToLong("chrY") + 2708701
4 scala> val posEnd = SparkSeqConversions.chrToLong("chrY") + 2708708
5 scala> seqBaseCovMale.filter(r=>r._1 >=posStart && r._1<=posEnd).collect.foreach(println)
6 14/03/28 11:10:34 INFO spark.SparkContext: Job finished: collect at <console>:26, took 7.4827817 s
7 (110002708701,ArrayBuffer(27, 8, 12, 3, 7, 1, 1, 6))
8 (110002708700,ArrayBuffer(1, 3, 1, 6, 27, 8, 10, 7))
9 (110002708703,ArrayBuffer(1, 3, 6, 8, 7, 27, 1, 12))

10 (110002708705,ArrayBuffer(13, 3, 6, 8, 1, 2, 27, 7))
11 (110002708702,ArrayBuffer(1, 8, 6, 27, 12, 3, 1, 7))
12 (110002708704,ArrayBuffer(1, 6, 12, 8, 27, 3, 1, 7))
13 (110002708707,ArrayBuffer(2, 27, 6, 1, 13, 7, 8, 3))
14 (110002708706,ArrayBuffer(2, 1, 13, 8, 27, 3, 6, 7))
15 (110002708708,ArrayBuffer(8, 7, 1, 3, 27, 6, 2, 13))
16

17

18 scala> val seqBaseCovMale= seqAnalysisMale.getCoverageBase
19 map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2)).groupByKey().cache
20 scala> seqBaseCovMale.count //populate memory cache
21 scala> seqBaseCovMale.filter(r=>r._1 >=posStart && r._1<=posEnd).collect.foreach(println)
22 14/03/28 11:11:37 INFO spark.SparkContext: Job finished: collect at <console>:26, took 0.2592477 s
23 (110002708701,ArrayBuffer(27, 8, 12, 3, 7, 1, 1, 6))
24 (110002708700,ArrayBuffer(1, 3, 1, 6, 27, 8, 10, 7))
25 (110002708703,ArrayBuffer(1, 3, 6, 8, 7, 27, 1, 12))
26 (110002708705,ArrayBuffer(13, 3, 6, 8, 1, 2, 27, 7))
27 (110002708702,ArrayBuffer(1, 8, 6, 27, 12, 3, 1, 7))
28 (110002708704,ArrayBuffer(1, 6, 12, 8, 27, 3, 1, 7))
29 (110002708707,ArrayBuffer(2, 27, 6, 1, 13, 7, 8, 3))
30 (110002708706,ArrayBuffer(2, 1, 13, 8, 27, 3, 6, 7))
31 (110002708708,ArrayBuffer(8, 7, 1, 3, 27, 6, 2, 13))
32

33 scala> seqBaseCovMale.filter(r=>r._1 >=posStart+5 && r._1<=posEnd+5).collect.foreach(println)
34 14/03/28 11:13:11 INFO spark.SparkContext: Job finished: collect at <console>:26, took 0.2585521 s
35 (110002708705,ArrayBuffer(13, 3, 6, 8, 1, 2, 27, 7))
36 (110002708713,ArrayBuffer(3, 6, 2, 8, 13, 27, 1, 7))
37 (110002708707,ArrayBuffer(2, 27, 6, 1, 13, 7, 8, 3))
38 (110002708712,ArrayBuffer(13, 7, 3, 27, 8, 2, 6, 1))
39 (110002708706,ArrayBuffer(2, 1, 13, 8, 27, 3, 6, 7))
40 (110002708709,ArrayBuffer(7, 1, 8, 27, 13, 3, 6, 2))
41 (110002708708,ArrayBuffer(8, 7, 1, 3, 27, 6, 2, 13))
42 (110002708711,ArrayBuffer(1, 2, 7, 3, 8, 13, 6, 27))
43 (110002708710,ArrayBuffer(2, 13, 1, 3, 7, 6, 27, 8))

To cache results on disk only:

1 scala> import org.apache.spark.storage.StorageLevel
2 scala> val seqBaseCovMale= seqAnalysisMale.getCoverageBase.map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2))
3 .groupByKey().persist(StorageLevel.DISK_ONLY)
4 scala> seqBaseCovMale.count //populate memory cache
5 scala> seqBaseCovMale.filter(r=>r._1 >=posStart+5 && r._1<=posEnd+5).collect.foreach(println)
6 14/03/28 12:09:38 INFO spark.SparkContext: Job finished: collect at <console>:27, took 0.602364 s

22

102

7 (110002708705,ArrayBuffer(13, 3, 6, 8, 1, 2, 27, 7))
8 (110002708713,ArrayBuffer(3, 6, 2, 8, 13, 27, 1, 7))
9 (110002708707,ArrayBuffer(2, 27, 6, 1, 13, 7, 8, 3))

10 (110002708712,ArrayBuffer(13, 7, 3, 27, 8, 2, 6, 1))
11 (110002708706,ArrayBuffer(2, 1, 13, 8, 27, 3, 6, 7))
12 (110002708709,ArrayBuffer(7, 1, 8, 27, 13, 3, 6, 2))
13 (110002708708,ArrayBuffer(8, 7, 1, 3, 27, 6, 2, 13))
14 (110002708711,ArrayBuffer(1, 2, 7, 3, 8, 13, 6, 27))
15 (110002708710,ArrayBuffer(2, 13, 1, 3, 7, 6, 27, 8))
16

17 seqBaseCovMale.unpersist

Reading cached data from disk is obviously slower than from memory (0.6s vs 0.26s in this case) but it is
still much faster then recompute everything from the scratch (7.5s)

7.10 Saving results

To summarize the feature saving methods:
Base coverage:

1 scala> val baseCov = seqAnalysis.getCoverageBase()
2 scala> seqAnalysis.saveBaseCoverageToFile("test_base.txt")

Exon counts:

1 scala> val genExonsMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc,
2 "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_sort_uniq.bed"))
3 scala> seqAnalysis.getCoverageRegion(genExonsMapB, unionMode=true)
4 scala> seqAnalysis.saveFeatureCoverageToFile("test_exon.txt",Exon)

Gene counts:

1 scala> val genesMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc,
2 "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_genes_chr_merged_swap.bed"))
3 scala> seqAnalysis.getCoverageRegion(genesMapB, unionMode=true)
4 seqAnalysis.saveFeatureCoverageToFile("test_gene.txt",Gene)

You can of course use the Apache Spark’s way of saving results to file by calling ‘saveAsTextFile’ or ‘saveA-
sObjectFile’(details). Note that that for using either of these methods you need to specify a path to a file
located on your HDFS storage while running an Apache Spark cluster.

7.11 Setting up complete data processing pipelines

Data processing pipelines may consist of a combination of:

• alignment data filtering

• feature building - getting the information on counts, coverage function, exon junctions in given genomic
regions.

• analysis of features - statistics, sanity checks, post-processing

The building blocks from each group may be selected according to the needs of the particular analysis.
Examples of the pipelines are:

• Typical pipeline for finding target genes with differential RNA expression or alternative splicing according
to a fixed annotation.

Filtering: filtering out the reads with low quality (eg PHRED>30) and large, biologically unjustified (arte-
factual) alignment gaps (gap in CIGAR > 5000bp).

Feature building: Getting the counts of reads for all the genes and exons in the annotation.

23

103

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 import pl.elka.pw.sparkseq.util.SparkSeqRegType._
4

5 /*initiate a SparkSeqJunctionAnalysis object and attach samples to it*/
6 val seqAnalysis = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1)
7 val caseId = Array(11, 32, 3, 42, 43, 47, 53, 58)
8 for(i<-caseId)
9 seqAnalysis.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF"+i.toString+"_Y.bam",i,1)

10 /*filter out reads with low quality, i.e. PHRED > 30*/
11 seqAnalysis.filterMappingQuality(_ > 30)
12 /*CIGAR regular expression for filtering out alignment gaps > 5000bp */
13 val cigRegex=
14 "^([0-9]+[MEQISXDHP]+)+((0*([0-9]{1,3}|[1-4][0-9]{3}))?N?[0-9]+M[0-9]*[EQISXDHP]*){0,3}[0-9]*[MEQISXDHP]*$".r
15 seqAnalysis.filterCigarString(cigRegex.pattern.matcher(_).matches)
16 /* get feature counts */
17 /*exons*/
18 val genExonsMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc,
19 "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_sort_uniq.bed"))
20 val exonCounts = seqAnalysis.getCoverageRegion(genExonsMapB, unionMode=true)
21 /*genes*/
22 val genesMapB = sc.broadcast(SparkSeqConversions.BEDFileToHashMap(sc,
23 "/BAM/64MB/aux/Homo_sapiens.GRCh37.74_genes_chr_merged_swap.bed"))
24 val genesCount = seqAnalysis.getCoverageRegion(genesMapB, unionMode=true)

Analysis: DESeq or edgeR according (Anders et al, Nat Prot 2013), finding genes with splicing as those that
have high variance of its exons median coverage, finding genes with splicing as those that have the high or
significant splicing index (Gardina et al, Gen Biology, 2006). Gene/exon counts can be easily imported into R
environment using RSparkSeq package.

• Analysis of splicing in RNA sequencing using exon junctions (“very simplified cufflinks”)

Filtering: filtering out low quality and large gap alignments as above
Feature building: finding the exon junctions, counting the junctions by genomic location
Analysis: excluding the junctions with low count (eg. 10) finding the genes with high variance of counts of

junctions; finding the junctions not hooked on canonical splice start and stop sites.

1 import pl.elka.pw.sparkseq.seqAnalysis.SparkSeqAnalysis
2 import pl.elka.pw.sparkseq.conversions.SparkSeqConversions
3 import pl.elka.pw.sparkseq.util.SparkSeqRegType._
4 import pl.elka.pw.sparkseq.junctions.SparkSeqJunctionAnalysis
5

6 /*initiate a SparkSeqJunctionAnalysis object and attach samples to it*/
7 val seqAnalysis = new SparkSeqAnalysis(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1)
8 val caseId = Array(11, 32, 3, 42, 43, 47, 53, 58)
9 for(i<-caseId)

10 seqAnalysis.addBAM(sc,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF"+i.toString+"_Y.bam",i,1)
11 /*filter out reads with low quality, i.e. PHRED > 30*/
12 seqAnalysis.filterMappingQuality(_ > 30)
13 /*CIGAR regular expression for filtering out alignment gaps > 5000bp */
14 val cigRegex=
15 "^([0-9]+[MEQISXDHP]+)+((0*([0-9]{1,3}|[1-4][0-9]{3}))?N?[0-9]+M[0-9]*[EQISXDHP]*){0,3}[0-9]*[MEQISXDHP]*$".r
16 seqAnalysis.filterCigarString(cigRegex.pattern.matcher(_).matches)
17 /*get junction reads*/
18 val juncAnalysis = new SparkSeqJunctionAnalysis(seqAnalysis)
19 val juncReadsCount = juncAnalysis.getJuncReadsCounts().filter(j=>(j._2 > 10))
20 val juncResults = juncReadsCount
21 .map(j=>(SparkSeqConversions.splitSampleID(j._1._1),SparkSeqConversions.splitSampleID(j._1._2),j._2))
22 .map(j=>((j._1._1,SparkSeqConversions.idToCoordinates(j._1._2),
23 SparkSeqConversions.idToCoordinates(j._2._2)),j._3))

7.12 Optimization hints

• First of all, read carefully Apache Spark Tuning guide;

• Use numeric IDs. Do conversions to Strings or Tuples only for the results presentation;

• Filter as much and as early in your data processing as possible;
• While using position predicates convert your value to Long, not the other way round, e.g.:

1 filter(r=>r._1 == position))

not:

24

104

1 filter(r=>SparkSeqConversions.idToCoordinates(r._1) == (‘‘chrY’’,2708711))

1 scala> val seqCovBase= seqAnalysis.getCoverageBase.map(r=>(SparkSeqConversions.stripSampleID(r._1),r._2)).cache
2 scala> seqCovBase.count
3 res3: Long = 7156008
4

5 scala> val position=SparkSeqConversions.coordinatesToId(("chrY",2708711))
6 scala> seqCovBase.filter(r=>r._1==position).count
7 14/03/28 17:20:02 INFO spark.SparkContext: Job finished: count at <console>:24, took 0.5758662 s
8 res18: Long = 8
9

10 scala> seqCovBase.filter(r=>SparkSeqConversions.idToCoordinates(r._1)==("chrY",2708711)).count
11 14/03/28 17:20:21 INFO spark.SparkContext: Job finished: count at <console>:22, took 0.7433719 s
12 res20: Long = 8

With small dataset the computation time difference is negligible but it is still 30% in this simple case.

8 RSparkSeq

8.1 Introduction

The goal of RSparkSeq4 package is to bring the power of SparkSeq to R-project environment.

8.2 Installation instructions

1. Make sure that rJava, jvmr and multicore R packages are installed.
Besides, all SparkSeq dependencies should be met.

If you come across any error while installing rJava package, first of all check if JAVA LD LIBRARY PATH
and LD LIBRARY PATH are set correctly, e.g. like this (exact path JVM and R may be different in your
system):

1 export JAVA_LD_LIBRARY_PATH=$JAVA_LD_LIBRARY_PATH:/usr/lib/jvm/java-6-oracle/lib/:/usr/lib/jvm/java-6-oracle/jre/lib/:

2 /usr/lib/jvm/java-6-oracle/jre/lib/amd64/server/

3 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_LD_LIBRARY_PATH:/usr/lib/R/lib

2. Get the SparkSeq “fat jar” from project’s Maven repo if you use HDFS in 1.2.1 version. If have other
HDFS version you need to prepare it by yourself:

1 git clone https://bitbucket.org/mwiewiorka/sparkseq.git
2 cd sparkseq/sparkseq-core

Edit build.sbt file and set your HDFS version, e.g. for Hadoop-2.2.0 it would look like this:

1 val DEFAULT_HADOOP_VERSION = "2.2.0"

and then you are ready to create your assembly:

1 sbt assembly

3. Find the path where jvmr package is installed, run R and enter these commands:

1 library(jvmr)
2 path.package("jvmr")
3 [1] "/home/spark/R/x86_64-pc-linux-gnu-library/3.0/jvmr"

4. Copy assembly jar from point 2. into java directory in jvmr package path.
5. Clone RSparkSeq repository and install the package:

4https://bitbucket.org/mwiewiorka/rsparkseq/

25

105

1 git clone https://bitbucket.org/mwiewiorka/rsparkseq.git
2 R CMD build rsparkseq
3 R CMD INSTALL RSparkSeq_0.01.0.tar.gz

8.3 Getting started

RSparkSeq is right now under development but some functionalities such as connecting do SparkSeq, creating
SparkSeqAnalysis objects and feature(gene, exon) have been already implemented.

8.3.1 Establishing connection to SparkSeq

To establish a connection to SparkSeq running of top of Apache Spark deployed using Apache Mesos you can
create a RSparkContext object as follows:

1 rcont<-RSparkContext(master="mesos://sparkseq001.cloudapp.net:5050",
2 executor="/frameworks/spark/0.9.0/spark-0.9.0-incubating-hadoop_1.2.1-bin.tar.gz",
3 sparkJar="sparkseq-core-assembly-0.1-SNAPSHOT.jar",sparkMesosCoarse=TRUE, debug=TRUE)

8.3.2 Creating RSparkSeqAnalysis object

To create a RSparkSeqAnalysis object and attach samples from SparkSeq multisample analysis tutorial7 you
can run the following code:

1 seqAnalysis<-RSparkSeqAnalysis(rcont,"/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF1_Y.bam",1,1,1,debug=TRUE)
2 samplesID<-c(11, 32, 3, 42, 43, 47, 53, 58)
3 for(i in samplesID) addBAMFile(seqAnalysis,c(
4 paste("/BAM/64MB/derfinder/chrom_Y/M/orbFrontalF",as.character(i) ,"_Y.bam",sep=""),i)
5)

8.3.3 Computing feature counts

8.3.3.1 Genes

1 regionHashMap(seqAnalysis) <-"/BAM/64MB/aux/Homo_sapiens.GRCh37.74_genes_chr_merged_swap.bed"
2 genes<-geneCounts(seqAnalysis)
3 > genes[1:5,]
4 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58
5 ENSG00000012817 8720 9103 8585 7375 5387 5835 7669 8175 7258
6 ENSG00000067048 6321 8647 5325 5598 3468 4140 4376 6827 4335
7 ENSG00000067646 1354 1499 1691 889 977 558 872 1128 1004
8 ENSG00000092377 75 48 31 61 29 10 31 26 42
9 ENSG00000099715 291 418 158 229 42 128 125 145 303

8.3.3.2 Exons

1 regionHashMap(seqAnalysis) <-"hdfs:/BAM/64MB/aux/Homo_sapiens.GRCh37.74_exons_chr_sort_uniq.bed"
2 exons<-exonCounts(seqAnalysis)
3 > exons[1:5,]
4 Feature Sample_1 Sample_3 Sample_11 Sample_32 Sample_42 Sample_43 Sample_47 Sample_53 Sample_58
5 ENSE00000652498 186 251 135 168 131 140 100 198 149
6 ENSE00000652501 148 211 136 156 130 83 140 230 171
7 ENSE00000652502 207 383 173 198 83 129 188 176 169
8 ENSE00000652503 215 384 182 265 93 136 177 161 135
9 ENSE00000652506 112 196 87 185 73 61 120 101 103

26

106

A Data sets used in tests

A.1 RNA-sequencing experiment

Reference genome: Equus caballus.EquCab2
Sequencing performed: Illumina HiSeq 2000, RNA whole transcript sequencing, unpaired, unstranded, polyA
protocol, alignment: Tophat 2.0.4

BAM filename Number of reads Mean reads length Size in [MB]

./Fam1/Case/Sample 25 sort.bam 8622606 101 627

./Fam1/Case/Sample 38 sort.bam 19357579 101 1411

./Fam1/Case/Sample 39 sort.bam 14087644 101 913

./Fam1/Case/Sample 42 sort.bam 18824924 101 1318

./Fam1/Case/Sample 44 sort.bam 9651030 101 697

./Fam1/Case/Sample 45 sort.bam 22731556 101 1538

./Fam1/Case/Sample 47 sort.bam 15975604 101 1164

./Fam1/Case/Sample 53 sort.bam 17681528 101 1267

./Fam1/Control/Sample 26 sort.bam 16323269 101 1129

./Fam1/Control/Sample 56 sort.bam 18408612 101 1293

./Fam1/Control/Sample 74 sort.bam 15934054 101 1147

./Fam1/Control/Sample 76 sort.bam 22329258 101 1447

./Fam1/Control/Sample 77 sort.bam 14788631 101 1051

./Fam1/Control/Sample 83 sort.bam 14346120 101 1020

./Fam1/Control/Sample 94 sort.bam 16693869 101 1194

./Fam2/Case/Sample 100 sort.bam 23159345 101 1569

./Fam2/Case/Sample 111 sort.bam 13720969 101 904

./Fam2/Case/Sample 29 sort.bam 9854977 101 775

./Fam2/Case/Sample 36 sort.bam 27592119 101 1849

./Fam2/Case/Sample 52 sort.bam 13604670 101 941

./Fam2/Case/Sample 55 sort.bam 12516180 101 889

./Fam2/Case/Sample 64 sort.bam 18952789 101 1332

./Fam2/Case/Sample 69 sort.bam 13213424 101 914

./Fam2/Control/Sample 110 sort.bam 10132735 101 754

./Fam2/Control/Sample 30 sort.bam 12921437 101 934

./Fam2/Control/Sample 31 sort.bam 15063095 101 1067

./Fam2/Control/Sample 51 sort.bam 16567508 101 1184

./Fam2/Control/Sample 54 sort.bam 26612475 101 1740

./Fam2/Control/Sample 58 sort.bam 26030133 101 1737

./Fam2/Control/Sample 63 sort.bam 22403075 101 1604

./Fam2/Control/Sample 91 sort.bam 12977072 101 908

./Fam2/Control/Sample 99 sort.bam 8676735 101 649

A.2 Multi-amplicon experiment

Reference genome: Hsapiens.UCSC.hg19
Sequencing performed: Ion Torrent, DNA, AmpliSeq multi amplicon sequencing, Comprehensive Cancer Panel
(design, 4477685 CCP), TorrentServer Alignment plugin (v3.6.56201)

BAM filename Number of reads Mean reads length Size in [MB]

Sample 012.bam 73397856 110 29952
Sample 012 scaled.bam 27524196 110 11232

27

107

B Additional literature

The list of papers that have influenced the work on SparkSeq, but could not have been mentioned in the main
manuscript due to the limited space:

Hong, D. et al. (2012). FX: an RNA-Seq analysis tool on the cloud. Bioinformatics, 28(5), 721–723.
Langmead, B. et al. (2010). Cloud-scale RNA-sequencing differential expression analysis with Myrna.

Genome biology, 11(8), R83.
Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next- generation sequencing.

Briefings in Bioinformatics, 11(5), 473–483.
Okoniewski, M. J. et al. (2013). Precise breakpoint localization of large genomic deletions using PacBio and

Illumina next-generation sequencers. BioTechniques, 54(2), 98–100.
Nordberg, H. et al. (2013). BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioin-

formatics, 29(23), 3014–3019.
O’Connor, B. D. et al. (2010). SeqWare Query Engine: storing and searching sequence data in the cloud.

BMC bioinformatics, 11(Suppl 12), S2.
Roy, A. et al. (2012). Massive genomic data processing and deep analysis. Proceedings of the VLDB

Endowment, 5(12), 1906–1909.
Schumacher, A. et al. (2013). Scripting for large-scale sequencing based on hadoop. EMBnet.journal, 19(A).
Taylor, R. C. (2010). An overview of the Hadoop/MapReduce/HBase framework and its current applications

in bioinformatics. BMC bioinformatics, 11(Suppl 12), S1.
Zaharia, M. et al. (2012). Fast and interactive analytics over Hadoop data with Spark.USENIX, vol 37, no

4
Zou, Q. et al. (2013). Survey of mapreduce frame operation in bioinformatics. Briefings in Bioinformatics.

It is also important now to mention the technical report of Massie et al., as a set of standards complemen-
tary and useful in the future for SparkSeq. However it was placed on the internet in parallel with the initial
submission of SparkSeq paper and thus was not influencing the work on its design and implementation:

Massie et al (2013) , ADAM: Genomics Formats and Processing Patterns for Cloud Scale Computing,
Technical Report No. UCB/EECS-2013-207, University of California, Berkeley

28

108

Original article

Benchmarking distributed data warehouse

solutions for storing genomic variant

information

Marek S. Wiewi�orka1, Dawid P. Wysakowicz1, Michał J. Okoniewski2

and Tomasz Gambin1,3,*

1Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, Warsaw 00-665,

Poland, 2Scientific IT Services, ETH Zurich, Weinbergstrasse 11, Zurich 8092, Switzerland and 3Department

of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, Warsaw 01-211, Poland

*Corresponding author: Tel.: þ48693175804; Fax: þ48222346091; Email: tgambin@ii.pw.edu.pl

Citation details: Wiewi�orka,M.S., Wysakowicz,D.P., Okoniewski,M.J. et al. Benchmarking distributed data warehouse so-

lutions for storing genomic variant information. Database (2017) Vol. 2017: article ID bax049; doi:10.1093/database/bax049

Received 15 September 2016; Revised 4 April 2017; Accepted 29 May 2017

Abstract

Genomic-based personalized medicine encompasses storing, analysing and interpreting

genomic variants as its central issues. At a time when thousands of patientss sequenced

exomes and genomes are becoming available, there is a growing need for efficient data-

base storage and querying. The answer could be the application of modern distributed

storage systems and query engines. However, the application of large genomic variant

databases to this problem has not been sufficiently far explored so far in the literature.

To investigate the effectiveness of modern columnar storage [column-oriented Database

Management System (DBMS)] and query engines, we have developed a prototypic

genomic variant data warehouse, populated with large generated content of genomic

variants and phenotypic data. Next, we have benchmarked performance of a number of

combinations of distributed storages and query engines on a set of SQL queries that ad-

dress biological questions essential for both research and medical applications. In add-

ition, a non-distributed, analytical database (MonetDB) has been used as a baseline.

Comparison of query execution times confirms that distributed data warehousing solu-

tions outperform classic relational DBMSs. Moreover, pre-aggregation and further

denormalization of data, which reduce the number of distributed join operations, signifi-

cantly improve query performance by several orders of magnitude. Most of distributed

back-ends offer a good performance for complex analytical queries, while the Optimized

Row Columnar (ORC) format paired with Presto and Parquet with Spark 2 query engines

provide, on average, the lowest execution times. Apache Kudu on the other hand, is the

only solution that guarantees a sub-second performance for simple genome range

queries returning a small subset of data, where low-latency response is expected, while

still offering decent performance for running analytical queries. In summary, research

VC The Author(s) 2017. Published by Oxford University Press. Page 1 of 16

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2017, 1–16

doi: 10.1093/database/bax049

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

109

and clinical applications that require the storage and analysis of variants from thousands

of samples can benefit from the scalability and performance of distributed data ware-

house solutions.

Database URL: https://github.com/ZSI-Bio/variantsdwh

Introduction

Variant information in genomic-based

personalized medicine and biomedical research

In the current era of high-throughput sequencing, the reli-

able and comprehensive analysis of genomic variant data

has become a central task in many clinical and research ap-

plications related to precision medicine. Joint analysis of

such data from thousands of samples collected under large

scale sequencing projects, such as Exome Sequencing

Project (ESP, http://evs.gs.washington.edu/EVS/), The

Atherosclerosis Risk in Communities Study (1), Centers for

Mendelian Genomics (2), UK10K (3), The Cancer Genome

Atlas (4) provides a detailed and medically useful insight

into molecular basis of many genetic conditions.

Although a plethora of statistical methods (e.g. for vari-

ant prioritization (5–9) or variant association (10–14) was

developed, there is a lack of tools that allow researchers to

perform ad hoc, unrestricted queries on large data sets.

Such tools should be powerful enough to deal with

population-scale sequencing data that will be generated by

such large-scale projects as Genomic England’s ‘100 000

Genomes Project’ (http://www.genomicsengland.co.uk/

the-100000-genomes-project/) or Precision Medicine

Initiative (http://www.nih.gov/precision-medicine-initia

tive-cohort-program) announced by the US administration,

which aim in sequencing of at least 1 million Americans.

The early attempts of applying big data technologies to

interactive analyses of sequencing datasets were focused on

providing the end user with an API (application program-

ming interface) in Pig (15) or Scala (16) languages and inte-

gration with the exiting bioinformatics file formats using

middleware libraries like Hadoop-Binary Alignment Map

(BAM) (17). Those approaches while very flexible, but im-

pose imperative programming paradigm which assume

that the end user explicitly declares query execution plans.

This is not suitable for many researchers and data scientists

who are not experts in distributed computing program-

ming at the same time.

Recently, several emerging technologies such as big data

query engines offering SQL (Structured Query Language)

interfaces like Apache Impala (http://impala.io/), Apache

SparkSQL (https://spark.apache.org/), Presto (https://

prestodb.io/), Apache Drill (https://drill.apache.org/) made

it possible to adapt declarative paradigms of programming

to analysing very large datasets. Finally, big data multi-

dimensional analytics cube solutions such as Apache Kylin

(http://kylin.apache.org/) can significantly speed up SQL

queries by storing already pre-aggregated results in a fast

noSQL database (e.g. Apache HBase).

Efficient ad hoc data analysis has been already for years

a main goal of OLAP (Online Analytical Processing) solu-

tions design based upon data warehouses. In the case of

genomic OLAP systems, the end-users are clinicians and

medical researchers. Both groups have different needs and

expectations towards data analysis, still those are not mu-

tually exclusive. On the clinical level it is important to find

knowledge about variants in well-known genes and to

compare the variant information of newly sequenced pa-

tients against a larger knowledge base. Here the ad hoc

question may have the form e.g. ‘tell me what diseases and

phenotypes may have a patient having a specific set of vari-

ants’. On the research side, the queries are focused on un-

supervised searches that combine sets of variants, sets of

genomic intervals and phenotypic information. This is

often about getting the estimates of specific measures of ag-

gregates, e.g. ‘tell me which phenotype has its related genes

with an over-represented amount of variants’.

Current solutions for analysing sequencing data using

SQL and storing genomic variant information can be div-

ided into two categories. First group of tools tries to take

advantage of classic single-node RDBMS (Relational

Database Management System) like MySQL (18, 19) or

newer analytical with column-oriented store like MonetDB

(20). Those solutions are able to provide flexibility and

very good ANSI SQL conformance and reasonable per-

formance [(21) while working on datasets that are already

pre-aggregated (e.g. using Apache Pig in case of (19)] or

limited in size [500 MB reported by (20)]. On the other

hand, they do not offer horizontal scalability, efficiently

compressed store and high availability features out of the

box.

The other group of prototypes focuses on providing dis-

tributed and scalable bioinformatics file formats equivalent

to well-known ones such as BAM or Variant Calling

Format (VCF). The major example of such an approach is

ADAM (Avro Data Alignment Map) formats family (22)

using Avro (https://avro.apache.org/) data serialization and

Page 2 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

110

Parquet (https://parquet.apache.org/) columnar data repre-

sentation. These files can be processed using popular query

engines like Apache Impala, Apache Spark or Presto. Such

a modular approach where storage is not tightly connected

to a specific computing framework opens up possibility of

choosing freely both a query engine and file format that

provides the best performance.

The goal of this prototyping study is to provide hints on

combining both approaches in order to create scalable and

flexible data warehouse infrastructures for genomic

population-scale studies at single sample and variant

granularity. For this purposes, the benchmarking suite con-

sisting of data generator, data model and set of queries has

been proposed. The benchmarking results of this project

are intended to point out the future directions of work on

genomic variant data warehouse biobanks. Such database

study may be needed in all the areas of application of gen-

omic systems: research, medical and commercial.

Biomedical issues that require ad hoc variant data

analysis

Accurate detection and interpretation of genomic variation

obtained from next generation sequencing data became the

central issues in the precision medicine and human genetics

research studies. To enable a comprehensive and efficient

variant analysis the storage and query engines should allow

to run a wide range of ad hoc queries providing the answer

to the most relevant biomedical questions.

Variant prioritization. Although many methods have

been proposed to evaluate variant pathogenicity (23), the

allele frequency measured in control populations remains

as one of the best variant effect predictors (24). Most of

the disease-causing variants are absent or rarely observed

in general population but their allele frequency may vary

among ethnic groups. Therefore, it is important to distin-

guish population-specific polymorphisms (likely benign)

from real pathogenic variants that are rare enough in every

sub-population represented in the control data.

Publicly available databases (1000 genomes, ESP, ExAC)

report variant frequencies for a small set of pre-defined eth-

nic groups (e.g. Europeans, Africans, Asians). Still, no infor-

mation about variant frequencies in smaller sub-populations

(e.g. on the country/state/county level) can be found in

them. There are many reasons of not reporting this poten-

tially useful data. First, detailed information about origin of

samples included in these studies was not always collected

or was not available. Second, the number of individuals in

other sub-populations was too small so reporting allele fre-

quency was not justified. Finally, storing allele frequency in

the VCF file for every possible level of granularity of popula-

tion structure would become impractical.

It can be expected that first two issues will be resolved

in the near future when more good quality data sets will

become available. Still, the pre-computing, updating and

storing of such high dimensional allele frequency informa-

tion will remain a challenge. Although testing the proto-

type, the main aspect taken into account was the

performance of our variant data warehouse in calculating

variants’ allele frequencies for various subsets of samples.

In particular, allele frequencies have been computed for

each of four major ethnic groups and for each of 181 coun-

tries represented in our simulated data set.

Masking genomic regions with excess of rare variants.

Disease-causing variants are not uniformly distributed

across the genome (5). They are often clustered in certain

parts of the gene, such as selected exons or protein do-

mains, as those functional elements of the genome are

more likely to be protein-coding. These regions are usually

characterized by a depletion of rare variants in control

databases (25, 26). Analogously, an excess of rare variants

indicates tolerant, less critical regions in which one should

not expect disease-causing mutations. Filtering variants

located within these commonly mutated regions reduces

the number candidates and therefore can improve the final

interpretation (27, 28).

The focus of the benchmarking was the ability of the

data warehouse to compute the cumulative frequencies of

rare, predicted deleterious variants in different types of

genomic regions such as exons, genes and cytogenetic

bands. This information can be further utilized to deter-

mine genomic intervals of higher than expected mutational

rate (29). It is worth noting that the same calculations can

be further repeated for any subset of samples, e.g. individ-

uals from selected ethnic groups or countries.

Association tests. Multiple statistical methods have

been developed to support novel disease gene discoveries in

large case-control analysis of sequencing data (10–14).

Classical GWAS approaches aim at identifying single vari-

ants, for which allele frequency differ significantly between

cases and controls. The main drawback of these methods is

a lack of power while dealing with very rare variants (30).

To overcome this issue, various aggregation tests have

been proposed. They analyse the cumulative effects of mul-

tiple variants in a gene or a genomic region, either by col-

lapsing information from multiple variants into single

score [Burden test (10–12) or evaluating aggregated score

test statistics of individual variants, such as C-alpha (13) or

SKAT (14)].

An important issue for aggregated tests is selecting an

appropriate subset of variants to be tested for association

(30). The allele frequency cutoff is usually determined

using the information on disease prevalence and expected

inheritance model. In order to refine further the subset of

Database, Vol. 2017, Article ID bax049 Page 3 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

111

variants one can use prediction scores to select the most

damaging mutations. However, despite many existing pre-

diction algorithms and a variety of filtering strategies there

is no single solution that fits to all studies.

Some types of queries have been run to assess the effi-

ciency of our variant warehouse in performing customized

region-based association tests. In particular, the search was

done for genes or exons enriched for rare deleterious vari-

ants in selected disease populations.

Investigating the depth of coverage. Coverage statistics

obtained from a large population of samples can be used in

many ways, including prediction of copy number variants

(CNVs) (31, 32) and detection of regions of poor or vari-

able coverage. CNVs are of great importance in clinical in-

vestigation because they often allow to explain patient’s

phenotype. On the other hand, an information about

poorly covered regions can be used to improve the results

of association studies (33).

Interactive variant browsing. To achieve the clinical ap-

plicability of genomic variant knowledge and for real

bench-to-bedside impact of personalized medicine, it is ne-

cessary to provide clinicians and medical researchers with

user-friendly tools for flexible querying and real-time

browsing variant information for a currently investigated

patient. Tasks such as phenotypic or ontology-based

searches, comparing large knowledge bases with local

sequenced biobanks of patients or finding associations be-

tween drug response and variants must certainly have the

basis in the efficient ad hoc variant database queries.

Having efficient querying for large variant databases with

convenient data management interfaces may convince clin-

icians to use more of the accumulated genomic knowledge

in their daily practice and will have in consequence benefi-

cial influence on patients and therapies.

State-of-the-art techniques for distributed data

processing

To construct the benchmarks for genomic variant database

it is necessary to systematize the current technologies, for-

mats and software tools used in this area. Those relevant

aspects are listed with short descriptions below.

File formats and storage engines

Apache ORC (https://orc.apache.org) and Apache Parquet

are the most advanced type-aware columnar file formats

used in the Hadoop Ecosystem stored using Hadoop File

System (HDFS). Both exhibit many design similarities such

as pluggable data compression mechanism (e.g. Snappy,

gzip/Zlib or LZO), data type specific encoders and support

for nested data structures. Apache ORC and Parquet are

also widely adopted and many distributed query engines

provide support for both, including Apache Spark, Apache

Hive and Presto. ORC introduces also a lightweight index-

ing that enables skipping of complete blocks of rows that

do not satisfy the query predicates. However, there has

been no consensus yet on whether one of them is superior

in terms of performance. Recent studies (34) suggest that

ORC might be significantly faster (ca. 1.3–5.8�). Apache

Kudu (35) is a novel open source storage engine for struc-

tured data which supports low-latency random access to-

gether with efficient analytical access patterns. It can be

run in parallel with the existing HDFS installation.

Query engines

Among the modern query engines the differentiating fac-

tors are e.g. query performance, memory requirements,

compatibility or APIs. In order to choose a subset of en-

gines to be tested with the benchmark data the list of re-

quirements has been prepared:

• ANSI SQL or its dialect as a querying language,

• ODBC/JDBC availability provides interoperability with

analytical tools like R, visualization and reporting

solutions,

• I/O operations with HDFS file system,

• support for both popular columnar storage: Apache

ORC and Parquet,

• support for Apache YARN (Yet Another Resource

Negotiator) to provide easy and efficient resource shar-

ing among different jobs running on a cluster the same

time,

• support for Hive metastore to provide an abstraction

layer over physical storage model details,

• at least basic data access authorization.

Big data query engines can be divided into four main

categories. Historically, the first group introduced an im-

plementation of MapReduce paradigm for executing SQL

queries and despite the fact that offers in many cases poor

performance it is still widely used because of its maturity

and stability. Directed Acyclic Graph (DAG)-based cat-

egory that is a natural successor of the legacy MapReduce

approach is currently under active development and seems

to becoming the most popular nowadays. MPP-like engines

that has is its origin in dedicated analytical appliances (e.g.

Netezza, Greenplum, Teradata). The last category are

OLAP cubes solutions that store pre-computed results (ag-

gregates) using distributed storage systems. The query en-

gines that have been initially evaluated as candidates for

including in the benchmark are as follows:

Hive is data warehouse software that enables querying

and managing large datasets in a distributed storage. It

provides a metastore which can keep the information on

Page 4 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

112

data specific parameters such as tables, schema, file format

or location of the files. Hive can be operated with HiveQL,

highly similar to ANSI SQL. There are various execution

engines where HiveQL queries can be run, such as

MapReduce, Tez or Spark. Among those, MapReduce is

the only execution engine that is supported by all Hadoop

distributions (i.e. Hortonworks and Claudera) and there-

fore only this engine was included in our benchmark.

Hive on MapReduce Hive initially had used

MapReduce as the execution engine. MR introduced the

paradigm (36) of writing distributed algorithms using two

phases: map and reduce. Hive transforms each query into

multiple stages consisting of both phases. In case of

MapReduce each stage is run independently with sub-

results persisted which may lead to IO overhead.

SparkSQL Apache Spark was designed to solve similar

problems as Apache Tez and also utilities the concept of

DAG’s. It is based on the concept of Resilient Distributed

Datasets (37). Spark apart from running directly Hive queries

have its own optimizer for HiveQL called Catalyst. It also

puts great emphasis on memory usage with project Tungsten

that uses off-heap memory. Recent major performance im-

provement introduced in the Spark 2.x branch called whole

stage code generation was a reason for including two Spark

releases (branch 1.6.x—still widely used and 2.1.x the most

recent one as of writing) in the benchmarking procedure.

Apache Presto is a project that was not aimed to replace

MapReduce as such but to improve interactive analytical

queries on large datasets. It allows querying data sources of

different sizes from traditional RDBMS and distributed stor-

ages like HDFS. Presto also aims to be ANSI SQL compliant,

thus it does not support HiveQL. It is a columnar execution

engine initially developed at Facebook and supported by

Teradata. It can connect to Hive metastore with a connector.

Apache Impala similar to Presto puts a lot more effort

on interactive analytics but it has much more limited sup-

port for file formats and data sources. Most notably it

lacks support for Apache ORC file format. According to

benchmark (34) it is however slower than Presto with

Apache ORC as storage in terms of wall time.

Apache Kylin is a distributed OLAP cube solution de-

veloped upon Hive and HBase software. It provides a web

user interface for both logical (dimensional modelling) and

physical (noSQL database table storage) design. Cuboids are

computed using map-reduce jobs and loaded into key-value

store for fast retrieval. Queries that cannot be answered using

OLAP cube can be rerouted to Hive for runtime processing.

MonetDB is a parallel, analytical RDBMS with a

columnar-oriented data store. Over the years (project was

initiated in the 1990s) it has introduced a great number of

unique features e.g. CPU-tuned query execution architec-

ture, usage of CPU-caches, run-time query optimizations

just to name a few. An optional SAM/BAM module for

processing of sequence alignment data has been also

released recently (20).

Major limitations and challenges in the modern distributed

database systems

Although distributed computing research area has been de-

veloping rapidly for the last 2–3 years, still there are many

challenges and limitations that designers and developers of

the system should to be aware and which need to be ad-

dressed in the future shapes of the software:

i. cost-based query optimization is still in its infancy

when compared with classic RDBMS—there is still

very often a need for manual query tuning like table

joins reordering or queries reformulation,

ii. ANSI SQL conformance is often not yet fully satisfied,

which leads to situations where one query needs to be

customized for each execution engine,

iii. many analytical/window functions are missing or

named differently,

iv. distributed queries launch overheads—there is still a

lot of effort put into providing more interactive user

experience as known from classic RDBMS,

v. engines self-tuning features are also not yet imple-

mented which very often results in manual, time-

consuming triaging and tuning on the level of engines

as well as single queries,

vi. in most of the cases the underlying storage layer is ei-

ther optimized for fast sequential reads or random ac-

cess patterns (Apache Kudu is an exception) and thus

sometimes data need to be duplicated.

Materials and methods

Base data model

In the area of data warehouses many design patterns have

been proposed (38, 39) that can be applied in the prototype

with some adjustments, specific to the requirements of dis-

tributed computing model and query engines. The main

issue to be solved is slow joins, which should be preferably

replaced with filtering or map-joins. One of the solutions it

is to apply the star schema which can lead to executing

map-joins when the dimension table can fit into the mem-

ory. Figure 1 depicts the star schema of the prototype.

Dimension tables are also designed to enable implementa-

tion of hierarchies for flexible adjusting of an area of inter-

est, e.g. for the geography dimension one can query over

region ! subregion ! country or for genomic position

gene! transcript! exon! chromosome! position.

The ‘fact’ table contains information retrieved from VCF

files, such as chromosome, position, reference and alternative

Database, Vol. 2017, Article ID bax049 Page 5 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

113

alleles, depth of coverage, genotype and genotype likeli-

hoods. It also includes references to all the dimension tables.

The table dim_geography represents world region of the

patient divided into hierarchical areas. That type of patient

information may be relevant in case of population gen-

omics studies From clinical perspective it may help to iden-

tify population specific polymorphisms and trace the

origin of causative variants, e.g. in epidemiology.

Both dim_genomic_position_ensembl and dim_geno-

mic_position_refseq cover referential genes and transcript

annotations as available in RefSeq an Ensembl databases,

respectively. Each record corresponds to a single exon and

contains information on its genomic location and associ-

ated transcript’s data. Exons included in canonical tran-

scripts are indicated by ‘iscanonical’ flag. The transcripts

with ‘ismerged’ flag, are results of overlapping all tran-

scripts that map to the same HGNC gene symbol.

Table dim_disease represents a set of Online Mendelian

Inheritance in Man (OMIM) diseases. This table models all

the phenotypic and disease information about the patient

and sample that can be possibly stored in a genomic data

warehouse. This may be extended into a set of data tables,

including phenotype ontology and all the clinical parameters

relevant for the diseases of patients whose samples are

stored. This is the most obvious direction of development of

the warehouse structure for practical applications.

The dim_variant_predictions contains variant informa-

tion that is available in dbNSFP database (40) with selected

results from some of the major predictors available.

The full definitions of all the tables in the database

schema can be found in the project results repository

(https://github.com/ZSI-Bio/variantsdwh).

Data model optimizations

Base data model organized as a classic star schema is

mainly suitable for running queries that require the highest

granularity of data but using only a small subset of rows

from the fact table. Queries that perform full-table scans

over fact table in order to calculate aggregated measures

over e.g. geographical items or genomic regions can benefit

from being rewritten to be run over aggregation tables. It

can be further optimized by introducing aggregation tables

that have been pre-joined with some of the most often used

dimensions. This can be particularly beneficial in the case

of high or ultra-high cardinality dimensions like dim_geno-

mic_position or dim_variant_prediction. Last but not least,

the base data can be transformed into OLAP cubes storing

all aggregates along predefined query patterns for running

fast slice and dice operations. To address all the needs

above, four levels of data storage have been introduced:

i. raw data of genotype calls (raw)—is a raw, not aggre-

gated fact table with the highest granularity and refer-

ences to all the dimension tables,

ii. aggregation tables level (aggr)—storing all variant

counts aggregated by countries, exons, diseases, and

keeping references to all dimension tables,

iii. aggregation and full denormalization level

(aggrþdenorm)—the aggregated fact table with pre-

joined dimension tables stored as one table,

iv. OLAP cube with all aggregates pre-computed and

stored in noSQL database (Kylin).

Construction of benchmarks

Cluster infrastructure overview

Hardware. All the test have been run using a 6 node cluster

(5 data/processing nodes and 1 used as master and name

node). Machines were equipped with 2xE5-2650 CPU re-

sulting in 16 cores/32 threads and 256GB of RAM. Each

node had local 6 hard drives in RAID0 (400 GB of disk

space) mode with peak throughput around 1.3 GB/s of se-

quential read speed. Network interconnects allowed stable

transfer at around 200MB/s.

Software. Cloudera (CDH) 5.8.2 distribution were installed

with Hadoop 2.6.0, Hive 1.1.0, HBase 1.1.1, Kudu 1.0.1

and Zookeeper 3.4.5 as main software components.

Versions of other components are summarized in Table 1.

Please, note that in the text Spark in version 1.6.3 is referred

to as Spark 1 and Spark in version 2.1.0 as Spark 2.

Figure 1. Proposed star schema of the genomic variant data warehouse, with central fact table and tables modelling patients’ genotypes and pheno-

types and genomic variant annotation to RefSeq and Ensembl.

Page 6 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

114

Query engines

The benchmark measures the performance of four distrib-

uted query engines described above, i.e. Apache Hive

(MapReduce), Apache Spark (versions 1.x and 2.x),

Presto, and Apache Impala. First three engines were tested

using two different file formats: ORC and Parquet. Apache

Impala, which does not support ORC, was tested in config-

uration with Parquet and Apache Kudu.

In addition, in the case of queries against aggregation

tables, MonetDB database was used as a a baseline to com-

pare performance of distributed query engines versus one

of the fastest parallel, columnar but still single-node rela-

tional databases. Distributed cube OLAP solution—

Apache Kylin has been also reviewed to indicate a possibil-

ity of reducing query times even more, with the aim of exe-

cution time below a single second.

Data warehouse physical data model details

In all the tests queried tables were stored in either ORC or

Parquet format with gzip compression and registered as

Hive tables in Hive Metastore.

Table 2 presents the details of the physical tables stored

in Hive and MonetDB.

In the case of MonetDB only 1 � 109 rows (approxi-

mately one-fifth of the dataset) has been loaded to the fact

table, while the rest of the tables (aggregation and dimen-

sion) were the exact copies of those stored in Hive. It was

because of the disk space constraints, as MonetDB does

not provide any data compression mechanism. It has been

estimated that the total size of fact and dimension tables

would exceed 400 GB that was attached as local storage.

The first level (fact) table enables running most general

queries even for single samples. The next two levels (2 and

3) (fact_agg_counts and fact_agg_counts_dims are pre-

aggregated by all dimension’s foreign keys. Levels 1–3 can

be queried using different computing engines (Hive on

MapReduce, SparkSQL, Presto) and the data is stored as

one of columnar storage such as Apache ORC or Parquet,

whereas the fourth level is implemented using Apache

Kylin which with HBase as a storage.

The size of the Kylin OLAP cube was 47.6 GB and it

took �6.5 h to build it. In case of Apache Kudu there was

a need to add an artificial primary key in case of aggre-

gated tables (levels 2 and 3).

Formulation of queries and testing

The performance of the variant, data warehouse has been

tested using 12 types of queries that correspond to biomed-

ical issues discussed in the previous section. The detailed

description of queries and engine-specific versions of SQLs

are available in the results repository.

i. Q1: Allele frequencies—breakdown by geographical

region. For every variant the set of population specific

allele frequencies corresponding to four continents

(subquery A) or 181 countries (subquery B) is calcu-

lated. This type of data can be used to identify and flag

common polymorphisms observed only in selected

populations.

ii. Q2: Cumulative frequencies per genomic interval. The

number of distinct rare (allele frequency <1 %), dele-

terious [predicted as damaging by Functional Analysis

through Hidden Markov Models (FATHMM)] vari-

ants and their cumulative allele frequencies are com-

puted for every single transcript (subquery A) or exon

(subquery B) in the human genome. This information

may help to detect the commonly mutated regions that

could be masked in the clinical investigation of pa-

tients variant data.

iii. Q3: Enrichment of variants in disease population. The

aggregated variant counts are computed for selected

subpopulation of disease patients for every transcript

(subquery A) or exon (subquery B) in the human gen-

ome. These queries provide substrates for aggregation

tests and can be easily used to identify genes or exons

with excess of damaging variants in disease population.

iv. Q4: Distribution of variantin disease populationnomic

intervals. Minimum, 25th percentile, median, 75th

percentile and maximum depth of coverage across all

samples is computed for every transcript (subquery A)

or exon (subquery B) in the human genome. These

queries, allow to locate poorly or variably covered re-

gions that may be a cause of inflation of false positive

values in association studies.

Table 1. Query engines comparison

Query engine Version ORC Parquet Kudu JDBC/ODBC YARN Security

Apache Hive 1.1.0 þ þ – þ þ þ
Apache Spark 1.6.3/2.1.0 þ þ þ/� þ þ þ
Presto 0.169 þ þ – þ þ/� þ/�
Apache Impala 2.8.0 – þ þ þ þ þ
Apache Kyli 1.2 þ þ – þ þ þ
MonetDB 11.21.11 N/A N/A N/A þ N/A þ

Database, Vol. 2017, Article ID bax049 Page 7 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

115

v. Q5–Q12: Set of queries on the fact table. In addition

to the eight complex queries (four query families)

described above, the benchmark includes a set of eight

queries that act on the fact table only, i.e. without joins

with dimension tables. In particular, ‘Q5’ returns the

list of all variants from the single sample and the given

genomic region. This simulates a typical scenario in

which clinician/analyst explore patientan variants in

the gene/region of interest. It is important that such a

simple genome range queries are processed efficiently,

possibly providing an answer in less than a few se-

conds. Remaining queries can be useful in other types

of exploratory analysis or in a process of quality con-

trol. These queries return:

a. Q6: the number of variantso occurrences corres-

ponding to the same substitution type (e.g. C > G)

in all samples,

b. Q7: the number of distinct variants per chromo-

some observed in all samples,

c. Q8: the number of variants for which a ratio of

variant to total reads exceeds 90% in the given

sample,

d. Q9: the ratio of heterozygous to homozygous vari-

ants on X chromosome in the given sample,

e. Q10: the number of variants per sample for a given

chromosome,

f. Q11: the number of different genes containing vari-

ants per sample,

g. Q12: the number of variants per chromosome for a

given sample.

Test set properties and its generation

The largest publicly available variant datasets (such as

ExAC) contain data from >50 000 of samples.

Unfortunately, ExAC does not provide sample level geno-

type data. Downloadable VCFs contain variant allele

frequencies across different populations; however, no

genotype data for individual samples are reported. To gen-

erate dataset that has similar properties to the ExAC one, a

data simulator has been implemented that uses real

population-specific allele frequencies extracted from

ExAC.

For the purpose of testing, an artificial SNV data set has

been generated, simulating 50 000 whole exome sequences.

To ensure the actual distribution of genomic variants in

geographical populations, the ethnic-specific allele fre-

quencies available in ExAC database have been used. This

simulation procedure consists of three steps:

First, every sample is assigned to one of four ethnic

groups, i.e. Europeans, Americans, Asians or Africans.

Then, samples within an ethnic group are associated with

countries, which are randomly selected with respect to

relative population sizes.

Subsequently, variants are simulated based on informa-

tion present in the dbNSFP (40) including chromosomal

position, reference/alternative alleles and allele frequencies

from ExAC. For every variant in dbNSFP the genotype has

been selected with a probability p(af) and corresponding to

the proper ethnic group allele frequency:

pðaf Þ ¼
1� 2 � af þ af 2 for genotype 0=0

2 � af � ð1� af Þ for genotype 0=1

af 2 for genotype 1=1

8>><
>>:

For every genotype generated in previous step, the total

depth and allelic depth of coverage have been simulated.

For a given position of the variant, the average value of the

total number of reads has been fixed, using information re-

ported in ExAC about a mean depth of coverage at this

location.

Test procedure automation

SQL-dialect specific version of all the queries have been

run using all query engines and in case of aggregated (stor-

age level 2), aggregated and denormalized (storage level 3)

also using MonetDB. Queries on storage level 3 have been

also tested using the Kylin cube.

Table 2. Physical data model properties

Table Rows Columns ORC-Zlib size PQ-Zlib size Kudu-Zlib size MonetDB size

fact 4827005513 14 24.9 21.7 76.3 69.6

fact_agg_counts 230380448 20 3.1 3.2 8.7 25.7

fact_agg_counts_dims 230380448 67 10.9 10.1 34.8 72.1

dim_gen_pos_ens 1519361 12 0.0097 0.0122 0.366 0.064

dim_gen_pos_rs 725811 12 0.0064 0.007 0.041

dim_geography 249 7 0.000004 0.000004 0.000012 0.007

dim_disease 7569 3 0.000104 0.000113 0.000348 0.003

dim_variant_predict 391271826 28 10.8 11.8 19.1 54.2

Page 8 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

116

To execute queries using selected engines and storage

formats there has been prepared a parametrized YAML-

based configuration file for each query (see https://github.

com/ZSI-Bio/variantsdwh for details). This enabled us to

automate the process of testing different combinations of

query engines and storage formats. Proposed automation

framework consists of Scala utility that reads parametrized

SQL query in a YAML file (together with additional meta-

data information) and executes it using a selected execu-

tion engine (using a JDBC interface) against tables stored

in a desired file format a specified number of times. In

order to even further automate the benchmarking process

additional shell scripts were developed that execute end to

end scenario, e.g. start Spark 1 Thrift server, run queries,

stop it, and repeat the same steps with Spark 2.

Framework is also shipped with tools that can generate the

physical model, populate dimension tables and generate

fact table of a given size. Data analyses and visualization

step are implemented as a set of R scripts that process CSV

output of the benchmark procedures.

In the case of Hive tables stored as ORC or Parquet for-

mat gzip/Zlib compression has been used in both cases.

Each query from the test set has been run several times and

average value has been calculated. Disk buffers at operat-

ing system level were purged before each query launch.

Results and discussion

After performing the queries with the selection of database

and query engines, a number of conclusions and recom-

mendations can be formulated. The numeric results of the

benchmarking tests can be found in the table

File formats and storage engines

Testing both ORC and Parquet file formats revealed that

there exist serious differences in their implementations be-

tween the computing engines. The same query run using a

different file format can slow down even by factor of

�1.5–2� (see Table 3). It can be observed that Apache

Hive performs better using ORC than Parquet. Apache

Spark always favours Parquet format, so does Presto with

ORC but here the difference seems to be less obvious (with

the exception of queries without join operations where the

difference can be significant). The difference in size of the

compressed files (using gzip/Zlib algorithm) were compar-

able, varied depending on a table but in the case of the fact

table reached the maximum value of ca. 20%.

In summary, Parquet-based file formats for storing gen-

omic information (as e.g. in ADAM) are a good choice for

running complex analytical queries (e.g. Q1–Q4) whereas

are not really suitable for fast random access patterns, e.g.

interactive variants browsing for a given sample identifier

and genomic position ranges (Q5). When choosing this file

format Apache Spark 2 seems to best query engine that in

most of the cases outperforms both Apache Spark 1 and

Apache Impala. The other option that is currently worth

considering is combination of ORC file format with Presto

query engine. In most of the cases it is slower in case of the

queries on raw data requiring joins with dimension tables

but on the other hand is more performant in single table scan

operations and data browsing. Neither of these combinations

of query engine/file format can compete with Apache

Impala/Kudu configuration in terms of fast data browsing

that can offer sub-second responses in most of the cases.

Query engines

None of the evaluated computing engines was an obvious

winner in all the queries and storage levels (see Figures 2 and

3 and Table 3). The results can be summarized as follows:

i. Presto is a perfect choice for simpler queries (with

fewer or no joins) or smaller tables (e.g. aggregated

and denormalized), on the other hand it is also suitable

for complex queries with many joins but is slower than

Apache Spark 2.

ii. Apache Hive (MapReduce) is particularly good at

complex queries with joins run on large fact tables but

still slower than other DAG-based and MPP-like solu-

tions. It does not excel at interactive, simpler queries

when it always was slower and the difference even

more visible.

iii. Apache Spark 2 seems to be most general purpose tool

in the study. It is suitable for both heavy processing

and comparable to Presto when interactivity is of im-

portance. A clear performance boost when compared

to Apache Spark 1 was observed - in almost all the test

cases it was faster and in some the difference was even

5–6�.

iv. Apache Kylin whereas is not as flexible as fully fledged

query engines with properly designed OLAP cube can

be truly interactive tool with sub-second response

times.

v. all of the query engines show superior performance

over MonetDB in case of running star-queries over the

aggregation tables with an average speedup �3–7�, in

case of queries against aggregated and denormalized

tables execution times converged, in a few queries

MonetDB proved to be equally fast as Kylin.

MonetDB seems to exceptionally well deal with

queries run against a single table.

vi. Apache Impala was the only query engine that was

used to access data stored in Apache Kudu. When used

Database, Vol. 2017, Article ID bax049 Page 9 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

117

together with Apache Kudu, it was the best combin-

ation capable of answering genome range queries (Q5)

in a truly interactive way (<1 s). It also offered com-

parable execution times to the Apache Spark 2 and

Presto in case of single table queries in many cases.

Data compression

The impact of data compression on table size and query

execution times has been tested for two best performing

configuration, i.e. Presto with ORC and Spark 2 with

Parquet.

Using columnar storage together with gzip/Zlib or

Snappy compression can significantly reduce storage re-

quirements (Figure 4A). In comparison to MonetDB the

storage space required can be even 5–7� smaller (Table 2).

In general data encoding and compression in Parquet

is 15% better than ORC in case of Snappy and gzip/Zlib

compression methods. Besides non-compressed data

encoded with ORC format can be even three times bigger

than non-compressed data encoded with Parquet

(Figure 4A).

Comparison of execution times revealed that there are

no visible overhead of Snappy data compression on the

performance. On the other hand, gzip/Zlib compression

may have either positive or negative impact on query exe-

cution times, depending on the query (Figure 4B). In case

of queries that require full table scans negative impact of

gzip/Zlib compression can be observed, e.g. compare exe-

cution times for Q7.

Data model optimizations

The use of aggregation tables can result in huge speedup

when running queries that require full-table scan to

Table 3. Queries average execution times for Apache Hive, Apache Spark, Presto, Impala, MonetDB and Apache Kylin

Query Level Hive on MR [s] Presto[s] Spark 1[s] Spark 2[s] Impala [s] MonetDB [s] Kylin [s]

Format ORC Parquet ORC Parquet ORC Parquet ORC Parquet Parquet Kudu Custom HFile

Q1A raw 648 1548 283 314 572 434 330 280 814 1523

aggr 216 212 25 28 55 35 27 23 85 54 207

aggrþdenorm 123 315 11 19 24 21 15 11 35 83 182 0.32

Q1B raw 710 1603 270 316 230 145 335 219 685 1580

aggr 193 195 24 28 39 27 25 22 84 56 44

aggrþdenorm 141 367 13 19 21 20 17 14 49 90 143 0.85

Q2A raw 386 543 103 172 613 478 143 81 157 976

aggr 285 300 34 29 138 79 33 28 51 82 263

aggrþdenorm 53 71 1.81 6.74 16 14 12 7.16 5.82 8.2 18 1.7

Q2B raw failed failed 271 320 721 492 144 79 180 1357

aggr 542 680 31 33 144 89 39 27 65 80 321

aggrþdenorm 51 67 2.24 7.49 18 8.59 12 6.37 6.91 8.64 17 2.5

Q3A raw 423 577 118 196 649 552 139 76 221 1082

aggr 294 300 35 36 154 94 44 32 85 82 549

aggrþdenorm 45 60 1.01 7.25 20 9.62 9.67 5.94 5.43 18 0.5 13

Q3B raw 422 573 113 193 655 427 136 75 233 1074

aggr 292 299 39 36 141 82 48 39 89 82 549

aggrþdenorm 44 62 1.18 8.63 21 11 11 5.47 6.3 11 0.3 14

Q4A raw 171 207 33 66 78 34 47 21 59 516

aggr 174 170 12 13 26 17 21 15 25 20 146

aggrþdenorm 123 142 3.66 6.36 16 14 9.51 9.72 12 18 91 0.26

Q4B raw 160 200 29 67 79 32 42 15 20 524

aggr 155 164 11 14 23 16 12 12 3.81 20 157

aggrþdenorm 56 70 0.71 4.58 12 7.19 5.1 2.6 4.35 24 3 0.91

Q5 raw 64 95 1.01 37 111 26 42 8.49 16 0.33

Q6 raw 23 49 0.45 24 67 13 31 3.05 11 18

Q7 raw 73 87 25 55 98 37 49 15 71 308

Q8 raw 28 76 5 39 66 20 38 3.55 16 0.36

Q9 raw 75 101 0.69 49 107 22 48 4.61 6.26 0.46

Q10 raw 58 84 3.86 41 85 19 47 8.82 21 58

Q11 raw 60 87 3.58 30 59 17 37 8.13 18 27

Q12 raw 77 100 4.47 25 29 14 28 3 8.78 0.27

Page 10 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

118

compute aggregated measures (Figure 5). In the conducted

tests it ranged from 6� in case of Hive up to 100� in case

of Presto with ORC file format.

Application of OLAP cube

Apache Kylin can offer unbeatable performance at a cost

of flexibility when running queries following predefined

patterns (i.e. hierarchies, groupings, measures). In most of

the cases it proved to be �5–20� faster than Presto or

SparkSQL. It can be seen as a ‘coprocessor’ boost compo-

nent that can offload SparkSQL or Presto by handling pre-

defined but parametrized queries.

Recommendations for genomic data warehouse

designers

Designing a scalable performant analytical system that can

handle rapidly growing amount of genomic data is by no

Q1A Q1B Q2A Q2B Q3A Q3B Q4A Q4B

0

500

1000

1500

0

200

400

600

0

100

200

300

400

500

raw
aggr

aggr_denorm

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA
M

on
et

D
B

K
yl

in

Engine

M
ea

n
tim

e
[s

]

Format

orc

parquet

kudu

hfile

custom

Figure 2. Execution times for all the query engines and file formats for the queries Q1-Q4 over raw, aggregation and denormalized tables with

MonetDB as a baseline. For a given configuration (query engine and file format) each query was executed three to five times. Different colors were

used to show the average execution times for different file formats. In addition, lower and upper bounds of error bars indicate the minimum and max-

imum query execution time, respectively.

Database, Vol. 2017, Article ID bax049 Page 11 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

119

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0

50

100

raw

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

Engine

M
ea

n
tim

e
[s

] Format

orc

parquet

kudu

Figure 3. Execution times for all the query engines and file formats for queries Q5–Q12. For a given configuration (query engine and file format) each

query was executed between three and five times. Different colors were used to show the average execution times for different file formats. In add-

ition, lower and upper bounds of error bars indicate the minimum and maximum query execution time, respectively.

Presto_ORC Spark2_Parquet

0

25

50

75

None Snappy Zlib None Snappy Zlib
Compression

S
iz

e
[G

B
]

Compression None Snappy Zlib

A

PRESTO_orc SPARK2_parquet

0

5

10

15

20

25

N
on

e

S
na

pp
y

Z
lib

N
on

e

S
na

pp
y

Z
lib

Compression

M
ea

n
tim

e
[s

]

Query
Q10

Q11

Q12

Q5

Q6

Q7

Q8

Q9

B

Figure 4. Impact of compression on fact table size and execution times for queries Q5–Q12.

Page 12 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

120

means an easy task. In this manuscript a few crucial find-

ings that may be treated as design guidelines have been

highlighted:

i. There are many competing big data ready file formats,

query engines and their combinations can substantially

differ in performance characteristics. Moreover, ser-

ious performance differences can be observed after up-

grade from one version of a tool to another.

Furthermore, since all of the discussed solutions are

truly distributed, also infrastructure characteristics

such as network interfaces and storage systems

throughput can impact the system performance. This is

why it is advisable to use benchmarking frameworks

prior taking a final decision on the architecture of the

genomic data warehouse.

ii. Another clear finding is that there is no superior com-

bination of query engine and storage format. Besides,

in case of data warehouses solution there is a need for

at least three kinds of processing: (i) ETL/ELT (extract,

transform, load) processes for loading/refreshing

tables, materialized views (aggregation tables), (ii) run-

ning large scale analytics and finally (iii) random

orc parquet kudu

0

500

1000

1500

0

200

400

600

0

100

200

300

0

100

200

300

0

500

1000

1500

H
IV

E
S

PA
R

K
1

S
PA

R
K

2
P

R
E

S
TO

IM
PA

LA

ra
w

ag
gr

ag
gr

_d
en

or
m

ra
w

ag
gr

ag
gr

_d
en

or
m

ra
w

ag
gr

ag
gr

_d
en

or
m

Level

M
ea

n
tim

e
[s

]

Query

Q1A

Q1B

Q2A

Q2B

Q3A

Q3B

Q4A

Q4B

Figure 5. Impact of aggregation and denormalization on query performace for queries Q1–Q4.

Database, Vol. 2017, Article ID bax049 Page 13 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

121

records browsing. They all differ in query latency re-

quirements. In case of the first two scenarios, it is ac-

ceptable that processing may take longer than a few

seconds (e.g. up to few minutes), whereas range

queries that are used to populate views of end user

interfaces are expected to execute in a fraction of se-

cond. Taking into consideration presented results we

recommend to use ORC file format together Presto as

a tool for running interactive queries and Apache

Spark 2 for implementing ETL processes and back-

ground queries for answering population scale re-

search questions.

iii. Distributed machine learning libraries that integrate

seamlessly with Apache Spark such as MLlib (http://

spark.apache.org/mllib/) or Sparkling Water (https://

www.h2o.ai/download/sparkling-water/) can be rec-

ommended for running more sophisticated exploratory

analyses.

iv. Distributed OLAP cubes solution together with denor-

malized aggregation tables can serve as acceleration

layer suitable for plugging into performant end user

interfaces.

v. In most of the cases usage of data compression (such

as Snappy) is advisable as it substantially reduces stor-

age requirements and do not negatively impact the per-

formance. Since the data are stored in a columnar

fashion sorting data by low cardinality columns such

as chromosome, reference allele, alternative allele to-

gether with a sample identifier can improve the com-

pression ratios even further.

vi. All the tested query engines support JDBC/ODBC

standards and with some additional effort can execute

the same SQL queries. This provides a possibility of

relatively easy way of switching between execution

engines.

Summary and future directions

This study is intended to point out directions for database

designers and bioinformaticians wishing to work on gen-

omic big data currently being produced by sequencing. The

computational experiment presented in the paper is an ini-

tial proof of the utility of modern columnar databases and

query engines to genomic variant data warehouses. At the

same time, it has been pointed out in the experiments re-

sults that for specific purposes the data structures and

queries can be optimized and various query engines are

complementary. The development of new distributed sys-

tems is an ongoing process, so benchmarks as presented in

the paper should be run in the future also for the novel so-

lutions that almost certainly will be developed in the soft-

ware ecosystems. Such a benchmark can be easily updated,

since the source code for our automated benchmarking

framework along with data simulator, complete testing

data set, SQL queries and raw results described above are

publicaly available at https://github.com/ZSI-Bio/

variantsdwh.

It needs to be also clearly stated that there is still a room

for improvement in terms of the performance of genomic

data warehouse solutions. Big data technologies such as

Apache Kudu or more recent one—Apache CarbonData

(http://carbondata.incubator.apache.org) indicates that it

might be possible soon to have one storage format that

supports OLAP style queries, sequential scans and random

access efficiently. Moreover, both technologies allow per-

formant random updates and inserts of data which would

be desirable in many cases. Further improvements in vec-

torized query processing together with better support for

Single Instruction Multiple Data extension available in

modern CPUs would result in better performance of query

engines. Integration of computation engines with hardware

accelerators, such as graphic cards (General-purpose com-

puting on graphics processing units), could be beneficial,

especially in case of machine learning analyses.

Since the genomic variants datasets are indeed large, the

execution time optimization can play significant positive

role in personalized medicine research and near future ap-

plications of large genomic biobanks. This is not a trivial

task, so will require more research and close collaboration

between the medical domain experts and creators of mod-

ern distributed data processing applications. In particular,

knowing the results of this paper, it is highly recommended

that a definition of query types and templates is created in

advance by the working together of database designers

with the experts of clinical genomics and that its perform-

ance with particular storage and execution engines is tested

with similar benchmarks.

Supplementary data

Supplementary data are available at Database Online.

Funding

This work has been supported by the Polish National

Science Center grants (Opus 2014/13/B/NZ2/01248 and

Preludium 2014/13/N/ST6/01843).

Conflict of interest. None declared.

References

1. The ARIC Investigators. (1989) The Atherosclerosis Risk in

Communities (ARIC) Study: design and objectives. Am. J.

Epidemiol., 129, 687–702.

Page 14 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

122

2. Chong,J., Buckingham,K.J., Jhangiani,S.N. et al. (2015) The

genetic basis of mendelian phenotypes: discoveries, challenges,

and opportunities. Am. J. Hum. Genet., 97, 199–215.

3. Kaye,J., Hurles,M., Griffin, H. et al. (2014) Managing clinically

significant findings in research: the UK10K example. Eur. J.

Hum. Genet., 22, 1100–1104.

4. Cancer Genome Atlas Research Network. et al. (2013) The

Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet.,

4, 1113–1120.

5. Davydov,E.V., Goode,D.L.,Sirota,M. et al. (2010) Identifying a

high fraction of the human genome to be under selective con-

straint using GERPþþ. PLoS Comput. Biol., 6, e1001025.

6. Adzhubei,I., Jordan,D.M, and Sunyaev,S.R. (2013) Predicting

functional effect of human missense mutations using PolyPhen-

2. Curr. Protoc. Hum. Genet., 2013, 7–20.

7. Shihab,H.A., Gough,J., Cooper,D.N. et al. (2013) Predicting the

functional, molecular, and phenotypic consequences of amino

acid substitutions using hidden Markov models. Hum. Mut., 34,

57–65.

8. Schwarz,J.M., Cooper,D.N.,Schuelke,M. and Seelow,D. (2014)

MutationTaster2: mutation prediction for the deep-sequencing

age. Nat. Methods, 11, 361–362.

9. Vaser,R.,Adusumalli,S., Leng,S.N. et al. (2016) SIFT missense

predictions for genomes. Nat. Protoc., 11, 1–9.

10. Morgenthaler,S. and Thilly,W.G. (2007) A strategy to discover

genes that carry multi-allelic or mono-allelic risk for common

diseases: a cohort allelic sums test (CAST). Mut. Res., 615,

28–56.

11. Li,B. and Leal,S.M. (2008) Methods for detecting associations

with rare variants for common diseases: application to analysis

of sequence data. Am. J. Hum. Genet., 83, 311–321.

12. Madsen,B.E. and Browning,S.R. (2009) A groupwise association

test for rare mutations using a weighted sum statistic. PLoS

Genet., 5, e1000384.

13. Neale,B.M., Rivas,M.A., Voight,B.F. et al. (2011) Testing for

an unusual distribution of rare variants. PLoS Genet., 7,

e1001322.

14. Wu,M., Lee,S., Cai,T. et al. (2011) Rare-variant association test-

ing for sequencing data with the sequence Kernel association

test. Am. J. Hum. Genet., 89, 82–93.

15. Schumacher,A., Pireddu,L., Niemenmaa,M. et al. (2014) SeqPig:

simple and scalable scripting for large sequencing data sets in

Hadoop. Bioinformatics, 30, 119–120.

16. Wiewi�orka,M.S., Messina,A., Pacholewska,A. et al. (2014)

SparkSeq: fast, scalable, cloud-ready tool for the interactive gen-

omic data analysis with nucleotide precision. Bioinformatics, 30,

2652–2653.

17. Niemenmaa,M., Kallio,A., Schumacher,A. et al. (2012)

Hadoop-BAM: directly manipulating next generation sequenc-

ing data in the cloud. Bioinformatics, 28, 876–877.

18. Ameur,A., Bunikis,I., Enroth,S. and Gyllensten,U. (2014)

CanvasDB: a local database infrastructure for analysis of

targeted-and whole genome re-sequencing projects. Database,

2014, bau098.

19. Cheng,W.Y., Hakenberg,J., Li,S.D. and Chen,R. (2016) DIVAS:

a centralized genetic variant repository representing 150 000 in-

dividuals from multiple disease cohorts. Bioinformatics, 32,

151–153.

20. Cijvat,R., Manegold,S., Kersten,M. et al. (2015) Genome se-

quence analysis with MonetDB: a case study on Ebola virus di-

versity. Datenbanksyst. Business Technol. Web., 242, 143–149.

21. Dorok,S. (2015) The relational way to dam the flood of genome

data. In: Proceedings of the 2015 ACM SIGMOD on PhD

Symposium. ACM, Melbourne Australia, pp. 9–13.

22. Massie,M., Nothaft,F., Hartl,C. et al. (2013) Adam: Genomics

formats and processing patterns for cloud scale computing.

Technical Report UCB/EECS-2013-207, EECS Department,

University of California, Berkeley.

23. Dong,C., Wei,P., Jian,X. et al. (2015) Comparison and integra-

tion of deleteriousness prediction methods for nonsynonymous

SNVs in whole exome sequencing studies. Hum. Mol. Genet.,

24, 2125–2137.

24. Lupski,J.R., Belmont,J.W., Boerwinkle,E. et al. (2011) Clan gen-

omics and the complex architecture of human disease. Cell, 147,

32–43.

25. MacArthur,D.G., Balasubramanian, S., Frankish, A. et al.

(2012) A systematic survey of loss-of-function variants in human

protein-coding genes. Science, 335, 823–828.

26. Lek, Monkol. et al. (2016) Analysis of protein-coding genetic

variation in 60,706 humans. Nature, 536, 285–291.

27. Fajardo,K.V.F., Adams,D., Mason,C.E. et al. (2012) Detecting

false positive signals in exome sequencing. Hum. Mut., 33,

609–613.

28. Shyr,C., Tarailo-Graovac,M., Gottlieb, M. et al. (2014) FLAGS,

frequently mutated genes in public exomes. BMC Med.

Genomics, 7, 64.

29. Brownstein,C.A., Beggs,A.H., Homer,N. et al. (2014) An inter-

national effort towards developing standards for best practices

in analysis, interpretation and reporting of clinical genome

sequencing results in the CLARITY Challenge. Genome Biol.,

15, R53.

30. Lee,S., Abecasis,G.R., Boehnke,M. and Lin,X. (2014) Rare-vari-

ant association analysis: study designs and statistical tests. Am. J.

Hum. Genet., 95, 5–23.

31. Fromer,M. and Purcell,S.M. (2014) Using XHMM software to

detect copy number variation in whole-exome sequencing data.

Curr. Protoc. Hum. Genet., 81, 7.23.1–7.23.21.

32. Krumm,N., Sudmant,P.H., Ko,A. et al. (2012) Copy number

variation detection and genotyping from exome sequence data.

Genome Res., 22, 1525–1532.

33. Do,R., Kathiresan,S. and Abecasis,G.R. (2012) Exome sequenc-

ing and complex disease: practical aspects of rare variant associ-

ation studies. Hum. Mol. Genet., 21, R1–R9.

34. Sundstrom,D. (2015). Even faster: data at the speed of Presto

ORC. https://code.facebook.com/posts/370832626374903/

even-faster-data-at-the-speed-of-presto-orc/.

35. Lipcon,T., Alves,D., Burkert,D. et al. (2015). Kudu: storage for

fast analytics on fast data. https://kudu.apache.org/kudu.pdf.

36. Dean,J. and Ghemawat,S. (2004) MapReduce: simplified data

processing on large clusters. To Appear in OSDI, 2008, 107–

113.

37. Zaharia,M., Chowdhury,M., Das,T. et al. (2012) Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation.

USENIX Association, San Jose, CA USA, pp. 2–2.

Database, Vol. 2017, Article ID bax049 Page 15 of 16

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

123

38. Chaudhuri,S. and Dayal,U. (1997) An overview of data

warehousing and OLAP technology. ACM Sigmod Rec.,

26, 65–74.

39. Cornell,M., Paton,N.W., Wu,S. et al. (2001) GIMS-a data warehouse

for storage and analysis of genome sequence and functional data. In

Bioinformatics and Bioengineering Conference, 2001. Proceedings of

the IEEE 2nd International Symposium on. Bethesda, MD, USA.

IEEE, pp. 15–22.

40. Liu,X., Wu,C., Li,C. and Boerwinkle,E. (2015) dbNSFP v3.0:

a one-stop database of functional predictions and annota-

tions for human non-synonymous and splice site SNVs. Hum.

Mut., 37, 235–241.

Page 16 of 16 Database, Vol. 2017, Article ID bax049

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bax049/3953981 by guest on 01 M

ay 2021

124

Scalable Framework for the Analysis of

Population Structure Using the Next Generation

Sequencing Data

Anastasiia Hryhorzhevska1, Marek Wiewiórka1, Michaª Okoniewski2, and
Tomasz Gambin1

1 Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665,
Poland

2 Scienti�c IT Services, ETH Zurich, Zurich, 8092, Switzerland.

Abstract. Genomic variant data obtained from the next generation se-
quencing can be used to study the population structure of the genotyped
individuals. Typical approaches to ethnicity classi�cation/clustering con-
sist of several time consuming pre-processing steps, such as variant �lter-
ing, LD-pruning and dimensionality reduction of genotype matrix. We
have developed a framework using R programming language to analyze
the in�uence of various pre-processing methods and their parameters on
the �nal results of the classi�cation/clustering algorithms. The results
indicated how to �ne-tune the pre-processing steps in order to maximize
the supervised and unsupervised classi�cation performance. In addition,
to enable e�cient processing of large data sets, we have developed an-
other framework using Apache Spark. Tests performed on 1000 Genomes
data set con�rmed the e�ciency and scalability of the presented ap-
proach. Finally, the dockerized version of the implemented frameworks
(freely available at: https://github.com/ZSI-Bio/popgen) can be eas-
ily applied to any other variant data set, including data from large scale
sequencing projects or custom data sets from clinical laboratories.

1 Introduction

Understanding of the genomic basis of diseases has become a central part of
human and molecular genetics. It motivates novel biological hypothesis, teaches
the things about epidemiology, causal risk factors and relations between di�erent
parts of biological system and enables to develop new tools that can be used
in diagnosis and treatment. Identi�cation of novel disease genes is a challenging
task that requires large scale case-control studies, which often involve individuals
from various human populations.

Genome-wide association studies (GWAS) and rare variant association stud-
ies (RVAS) give the ability to exammarkers across whole genomes simultaneously
and test hundreds of thousands allele variants to �nd associations between geno-
type in the markers and likelihood of disease. GWAS have focused on the analysis
of common variants, however most of genetic heritability remained unexplained
[13]. Next generation sequencing enabled to sequence whole genomes and explore

125

2 Scalable framework for the analysis of population structure using the NGS data

the entire spectrum of allele frequencies, including rare variants. Currently, most
studies focuse on variants with low minor-allele frequency (0.5% < MAF < 5%)
or rare variants (MAF < 0.5%) [16, 20].

Population structure retrieving and inferences are critical in association stud-
ies, in which population strati�cation (i.e. the presence of genotypic di�erences
among di�erent groups of individuals) can lead to inferential errors. Genotype-
based clustering of individuals is an important way of summarizing the genetic
similarities and di�erences between individuals of di�erent ancestry. A num-
ber of methods have been proposed to deal with the problem such as principal
component analysis (PCA) [22], multidimensional scaling (MDS) [18], linkage
disequilibrium-based approach [15]. However, these algorithms need to be well-
tuned to complete the learning process in the best possible way and considerably
low computation time.

At the same time, the whole genome sequencing data generated in large-
scale sequencing projects, increase the number of sequenced individuals and the
feature space (the number of unique allele variants) by orders of magnitude.
This sharp increase in both sample numbers and features per sample requires a
massively parallel approach for data processing [25]. Traditional parallelization
strategies implemented e.g. in PLINK [23] cannot scale with variable data sizes
at runtime [21].

To address this issue, we developed two frameworks. The �rst one was de-
veloped in R programming language and was built on the top of a SNPRelate
toolset [10]. It was designed for �ne-tuning the quality-control (QC) and the
classi�cation model parameters. It provides also the graphical representation of
the results. The other one is a distributed computing framework for scalable
strati�cation analysis in Apache Spark [3] using ADAM [6] in combination with
machine learning (ML) libraries Spark MLlib [9], H2O[8] and Apache System
ML [4]. It is more e�ective in processing of datasets containing large number of
observations (i.e. number of samples > 10, 000) comparing to the �rst framework.

2 Methods

2.1 Dataset

To test our approach we have used the 1000 Genomes Project genotype data [1]
released in the Variant Call Format (VCF) [11]. The dataset contains variants
obtained from sequencing of 2,504 individuals (observations) across more than
30,000,000 alleles (features). The individuals are distributed across �ve super
populations, i.e.: African (AFR), Mixed American (AMR), East Asian (EAS),
South Asian (SAS) and European (EUR) and 26 sub-populations [1].

Our aim was to test the performance of ML algorithms to reconstruct both
super- and sub-populations. To do this, the classi�cation/clustering models were
built either separately, i.e. for either super or sub-population groups or hierarchi-
cally, starting from super-populations and drilling down to the sub-populations.

126

Scalable framework for the analysis of population structure using the NGS data 3

2.2 Frameworks for Inferring the Population Structure

Due to the limitation of the current implementation of PCA in Apache Spark,
which does not allow to process matrices with more than 65,535 columns [2],
we implemented two separate frameworks. The �rst framework implemented in
R provides an e�cient way for testing and �ne-tuning QC, PCA and machine
learning parameters on the relatively small number of observations (up to several
thousands). The second framework implemented in Apache Spark, besides its
limitation of the number of features deals gracefully with a large number of
observations (i.e. hundred of thousands of individuals).

Since the original data are stored in VCFs, the �rst task was to transform the
data into more e�cient format. In case of the �rst framework, we used gdsfmt R
package that provides an interface to CoreArray Genomic Data Structure (GDS)
�les designated for storing SNP genotypes. In this format each byte encodes up
to four SNPs genotypes reducing the �le size and access time [7]. In the second
framework, we used ADAM format [6] to store and process genomic variant data
in Hadoop Distributed File System (HDFS). The original 1000 Genomes data
was transformed from VCF �les to the respective ADAM format. Then, using
ADAM Parquet �le, we read the genotypes into Spark data frame and extracted
the information that is required for further processing.

Next, we perform three pre-processing steps, including: (i) missing values
treatment, (ii) feature selection, and (iii) dimensionality reduction. These steps
are done to simplify the data analysis, reduce the noise in the data and increase
the accuracy of ML algorithms, and are particularly important in case of high
dimensional datasets.

Finally, we apply classi�cation and clustering methods to the reduced dataset
and present algorithms quality and e�cient performance for di�erent sets of
parameters and subsets of the data. Figure 1 indicates the alternative steps in
the analysis process.

2.3 Missing Values Handling

In the high dimensional genomic data it is likely that some genotypes are miss-
ing, e.g. due to low coverage of sequencing reads in selected samples. The default
strategy used in the population strati�cation is to drop features containing miss-
ing values. However, sometimes (e.g. in case of limited genotype datasets from
small gene panels) it could be desirable to test on "predictive missingness", that
is, what dependency the response may have upon missing values. Therefore, in
our framework we implemented both approaches. In the �rst one we drop all
variants (features) with any missing data. In the second approach we �lter out
variants with the proportion of missing values exceeding the given threshold,
de�ned as P1.

127

4 Scalable framework for the analysis of population structure using the NGS data

Input data
Genotypes from the 1000Genomes

VCF to ADAM transformation
or VCF to GDS transformation

SNP QC
Missing value treatment

Feature Selection

Alleles frequency
range �ltering

Linkage Disequilibrium
Pruning

Sample QC
Outliers Detection

Dimensionality Reduction

Classi�cation / Clustering

Quality Evaluation

yes

no

Fig. 1. The work�ow for both supervised and unsupervised classi�cation of genomes
variant data

2.4 Feature Selection

Alleles Frequency Range Filtering. To reduce the number of variants in the
data, we �rst compute the frequencies of alternate alleles across all individuals in
the dataset. For further analysis we select variants with allele frequencies within
a certain range, de�ned as P2.

Linkage Disequilibrium Pruning. Linkage disequilibrium (LD) is a non-
random association of alleles at di�erent genomic positions (loci) [24]. LD prun-
ing on the variants is suggested before running dimensionality reduction meth-
ods because the LD blocks can decrease the ability of the algorithms to separate
populations [27]. Such blocks should be removed from the analysis.

In our framework we implemented three methods for calculation of LD values.
The �rst algorithm calculates so called composite coe�cient that is estimated

128

Scalable framework for the analysis of population structure using the NGS data 5

from di-locus counts and sample allele frequencies [26]. The second LD calcu-
lation algorithm uses a common standardization method [17] that is a relative
measure of disequilibrium compared to its maximum D′ [14]. Third method in-
volves so called R coe�cient that is computed using expectation maximization
algorithm under assumption of Hardy-Weinberg Equilibrium (HWE).

The LD pruning algorithm recursively removes SNPs that are greater than
a LD threshold (de�ned as parameter P3) within a sliding window based on the
pairwise genotypic correlation.

2.5 Dimensionality Reduction

To correct the population strati�cation and detect true population structure we
implemented PCA [19]. The PCA algorithm is carried out on a set of possibly
collinear features and performs a transformation to produce a new set of un-
correlated features. Although the Spark MLlib [9] library provides methods for
principal components (PCs) computation, these implementations could not han-
dle 1000 Genomes variant dataset and therefore this step was performed using
parallelized algorithm implemented in SNPRelate R package.

The number of PCs that are further used for classi�cation/clustering is se-
lected according to the percentage of cumulative variance of the �rst n PCs. We
tested the optimal number of PCs, de�ned as an input parameter P4.

2.6 Unsupervised Learning Algorithms

To group individuals and recover the population structure three algorithms
from the Spark MLlib library [9] (K-means, Bisecting K-means and Gaussian
Mixture), and three implemented in R libraries (Hierarchical, K-means and
Expectation-Maximization) are used. The quality of clustering is assessed using
both external (Purity, Adjusted Rand Index [ARI]) and internal (Dunn Index
[DI], Calinski-Harabasz Index [CH]) evaluation criteria.

2.7 Supervised Learning Algorithms

In our framework we test three algorithms for supervised classi�cation from
Spark MLlib and Spark ML, Apache System ML and R, including: Support
Vector Machine (SVM), Random Forests, and Decision Trees.

To evaluate the quality of classi�cation with respect to every class in the
dataset, we build confusion matrix and compute common classi�cation metrics
such as accuracy, precision, recall, and the F1-Score (i.e. harmonic mean of pre-
cision and recall). Identi�cation of ethnic group for an individual is a multi-class
classi�cation problem. Therefore in addition to per-class measures we average
them over all the classes resulting in macro-averaged precision, recall, F1-Score.
In addition, we compute the Kappa statistic, which is a measure of agreement
between the predictions and the actual labels. It is interpreted as a comparison
of the overall accuracy to the expected random chance accuracy.

129

6 Scalable framework for the analysis of population structure using the NGS data

3 Results and Discussion

To compare the quality of classi�ers implemented in our frameworks, we per-
formed all experiments on chromosome 22 from 1000 Genomes dataset.

Results of unsupervised classi�cation. First, we applied QC procedures to
exclude problematic SNPs from the analysis. Since there was no missing values,
the P1 was set to zero in all of the experiments. Next, allele frequency �ltering,
LD pruning, dimensionality reduction and clustering/classi�cation algorithms
were performed. We repeated experiments for di�erent input parameters (P2, P3,
P4) and investigated the clustering quality for the three methods by comparing
the annotated super-population label (AMR, EUR, AFR, EAS, SAS) for each
individual in the dataset to the label assigned. Table 1 presents the �nal selection
of the �ne-tuned QC parameters for each unsupervised method and the quality
performance of these methods.

Table 1. Summary of quality control parameters and performance of the unsupervised
classi�ers

Method MAF LD nPCs Purity ARI CH DI

Hierarchical (0.005; 0.05) 0.2 5 97.96 95.75 1472.83 0.02
K-means (0.005; 0.05) 0.2 4 92.21 86.89 7911.91 0.03
E-M (0.005; 0.1) 0.2 4 96.21 91.76 3232.82 0.01

The best result was obtained using hierarchical method (95.75 % of ARI).
However, in case of K-means the CH index is much higher, i.e. the clusters
are more compact and the distance between groups are longer than in case of
other models. Visualization of the results of hierarchical algorithm for the �ne-
tuned parameters is presented in Figure 2 and corresponding confusion matrix
is shown in Table 2. As expected, AMR and EUR are tended to be clustered
into one group, which indicates the similarities between these two populations.

Table 2. Confusion matrix of the hierarchical clustering, P2 ∈ (0.005; 0.05), P3 = 0.2,
P4 = 5

1 2 3 4 5

AFR 0 0 4 656 1
AMR 33 1 302 11 0
EAS 0 504 0 0 0
EUR 502 0 1 0 0
SAS 0 0 0 0 489

Our frameworks can be applied to cluster sub-populations. The performed
experiments indicate that the analysis of sub-populations is more challenging

130

Scalable framework for the analysis of population structure using the NGS data 7

Fig. 2. Results of the hierarchical clustering. Colors indicate true populations, whereas
groups discovered by clustering are marked using di�erent shapes. Hierarchical clus-
tering was performed on dataset pre-processed using the following thresholds: P2 ∈
(0.005; 0.05), P2 = 0.2, P4 = 5.

and requires to include more variation to obtain satisfactory results, i.e. use
wider MAF interval and increased number of PCs.

Results of supervised classi�cation. The process of building supervised clas-
si�ers consisted of two steps. First, we �xed classi�cation model parameters and
tuned QC parameters. Second, we estimated classi�er parameters for the QC pa-
rameters obtained in the �rst step. Final �ne-tuned QC and classi�cation model
parameters are summarized in Table 3. The results indicate that the QC param-
eters should be tuned for each supervised method individually. Comparing with
unsupervised learning, much larger number of PCs is required to build the best-
performing model. Corresponding classi�cation models' prediction performances
are presented in Table 4. Comparison of �ve classi�ers revealed that SVM with
radial kernel (F1= 98.91%) and Random Forest (F1 = 99.31%) outperformed
Decision Trees and SVM with either linear or quadratic kernel.

Tests of distributed framework. Our distributed framework enables to pro-
cess the large amount data in parallel on multiple nodes, which not only allow
to overcome the problem of limited memory on a single machine but also signif-
icantly reduce the overall computation time.

The tests were done for the data on which all pre-processing steps were
performed. The dataset consisted of 2,504 human individuals across 5 super-

131

8 Scalable framework for the analysis of population structure using the NGS data

Table 3. Summary of quality control and classi�ers parameters

Method MAF LD nPCs C γ split cp ntree

SVM linear (0.005; 0.05) 0.2 60 50 - - - -
SVM quadratic (0.005; 0.05) 0.2 50 60 0.1 - - -
SVM radial (0.005; 0.05) 0.2 70 20 10 - - -
Decision Trees (0.005; 0.05) 0.2 60 - - gain 0.01 -
Random Forest (0.01; 0.05) 0.2 60 - - - - 109

Table 4. Prediction models performance of classi�cation of super population groups

Method Precision Recall F1-Score Accuracy Kappa

SVM linear 96.43 93.63 94.75 96.25 0.95
SVM quadratic 96.72 94.40 95.38 96.61 0.96
SVM radial 98.57 98.78 98.67 98.91 0.99
Decision Trees 98.14 95.53 96.60 97.70 0.97
Random Forest 99.05 99.33 99.17 99.31 0.99

populations assayed for 5,000 SNPs. We recorded time execution of both frame-
works performing PCA on the datasets generated by duplicating the original
1000 Genomes data several times as required [12]. For datasets with the number
of samples greater than 20,000 non-distributed framework could not complete
computation in a reasonable amount of time, and therefore for larger dataset we
report the results of distributed (MLlib-based) implementation only.

Table 5 shows that non-distributed framework deals better with a small num-
ber of observations (and thus is more suitable for �ne-tuning performed on small
datasets), whereas distributed implementation is much faster for a large number
of observations, i.e. N > 10, 000. In particular, Spark MLlib was able to process
a dataset of 500,000 samples in less than 23 minutes, while SNPRelate did not
complete for a dataset of 50,000 samples after 18 hours of computing.

Table 5. Time execution performance for distributed versus non-distributed frame-
work on increasing datasets derived from 1000 Genomes data, using 5,000 SNPs (total
number of executors is 128, executor memory is 12 GB)

Number of

observations

Distributed

[hh:mm:ss]
Non-distributed

[hh:mm:ss]

2,504 00:13:06 00:00:12
5,008 00:13:10 00:01:12
10,016 00:13:37 00:12:18
15,024 00:13:52 00:41:06
20,048 00:14:11 01:37:06
50,080 00:15:40 >18h
100,160 00:16:29 -
250,400 00:19:03 -
500,800 00:22:43 -

132

Scalable framework for the analysis of population structure using the NGS data 9

4 Conclusions

Our framework for the analysis of the population structure implemented in R
programming language provides automated estimation of the optimal QC's and
machine learning parameters, and ensures the high-quality performance of both
clustering (ARI = 95.75%) and classi�cation (F1 = 99.31%) algorithms for
analysis of super-populations. Importantly, it allows for e�cient comparison of
di�erent machine learning solutions and test for a wide range of input parameters
and pre-processing strategies in order to �ne-tune clustering/classi�cation meth-
ods. Furthermore, the obtained results show that our framework gives better
quality performance of clustering of super-population groups (ARI = 95.75%)
than other approaches, e.g. VariantSpark (ARI = 84%) [5].

Our second framework has been developed to deal with dataset containing
large number of samples (e.g. > 10,000 individuals). Both dimensionality reduc-
tion and machine learning methods have been implemented using Apache Spark.
The results of performed experiments on 1000 Genomes data set demonstrate
that the tool can handle the population genetic analysis on the data from large
sample size whole-genome sequencing cohorts and process it 100x faster than
single node solution.

Acknowledgments. This work has been supported by the Polish National Sci-
ence Center grants: Opus 2014/13/B/NZ2/01248 and Preludium 2014/13/N/ST6
/01843.

References

1. The 1000 genomes project, http://www.internationalgenome.org/

2. Apache Spark. RowMatrix, https://github.com/apache/spark

3. Apache SparkTM, http://spark.apache.org/

4. Apache SystemML - Declarative Large-Scale Machine Learning, https://

systemml.apache.org/

5. BauerLab/VariantSpark, https://github.com/BauerLab/VariantSpark

6. Big Data Genomics, http://bdgenomics.org/

7. Bioconductor - gdsfmt, http://bioconductor.org/packages/gdsfmt

8. H2o.ai, http://www.h2o.ai/download/sparkling-water/

9. MLlib | Apache Spark, http://spark.apache.org/mllib/

10. SNPRelate, http://bioconductor.org/packages/SNPRelate/

11. The variant call format speci�cation, https://github.com/samtools/hts-specs

12. Abraham, G., Inouye, M.: Fast Principal Component Analysis of Large-Scale
Genome-Wide Data. PLoS ONE 9(4) (Apr 2014)

13. Auer, P.L., Lettre, G.: Rare variant association studies: considerations, challenges
and opportunities. Genome Medicine 7(1) (Feb 2015)

14. Hamilton, D.C., Cole, D.E.C.: Standardizing a Composite Measure of Linkage Dis-
equilibrium. Annals of Human Genetics 68(3), 234�239 (May 2004)

15. Hinrichs, A.L., Larkin, E.K., Suarez, B.K.: Population Strati�cation and Patterns
of Linkage Disequilibrium. Genetic epidemiology 33(Suppl 1), S88�S92 (2009)

133

10 Scalable framework for the analysis of population structure using the NGS data

16. Lee, S., Abecasis, G., Boehnke, M., Lin, X.: Rare-Variant Association Analysis:
Study Designs and Statistical Tests. American Journal of Human Genetics 95(1),
5�23 (Jul 2014)

17. Lewontin, R.C.: The Interaction of Selection and Linkage. I. General Considera-
tions; Heterotic Models. Genetics 49(1), 49�67 (Jan 1964)

18. Li, Q., Yu, K.: Improved correction for population strati�cation in genome-wide
association studies by identifying hidden population structures. Genetic Epidemi-
ology 32(3), 215�226 (Apr 2008)

19. Liu, L., Zhang, D., Liu, H., Arendt, C.: Robust methods for population strati�ca-
tion in genome wide association studies. BMC Bioinformatics 14, 132 (2013)

20. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindor�, L.A., Hunter,
D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H.,
Guttmacher, A.E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M.,
Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G.,
Haines, J.L., Mackay, T.F.C., McCarroll, S.A., Visscher, P.M.: Finding the missing
heritability of complex diseases. Nature 461(7265), 747�753 (Oct 2009)

21. O'Brien, A.R., Saunders, N.F.W., Guo, Y., Buske, F.A., Scott, R.J., Bauer, D.C.:
VariantSpark: population scale clustering of genotype information. BMC Genomics
16, 1052 (2015)

22. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Re-
ich, D.: Principal components analysis corrects for strati�cation in genome-wide
association studies. Nature Genetics 38(8), 904�909 (Aug 2006)

23. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M., Bender, D.,
Maller, J., Sklar, P., de Bakker, P., Daly, M., Sham, P.: PLINK: A Tool Set for
Whole-Genome Association and Population-Based Linkage Analyses. American
Journal of Human Genetics 81(3), 559�575 (Sep 2007)

24. Slatkin, M.: Linkage disequilibrium � understanding the evolutionary past and
mapping the medical future. Nature Reviews Genetics 9(6), 477�485 (Jun 2008)

25. Stein, L.D.: The case for cloud computing in genome informatics. Genome Biology
11(5), 207 (2010)

26. Weir, B.S.: Genetic Data Analysis. Sunderland, Massachusetts:Sinauer Associates,
Inc (1996)

27. Zou, F., Lee, S., Knowles, M.R., Wright, F.A.: Quanti�cation of Population Struc-
ture Using Correlated SNPs by Shrinkage Principal Components. Human Heredity
70(1), 9�22 (Jun 2010)

134

Genome analysis

SeQuiLa: an elastic, fast and scalable

SQL-oriented solution for processing

and querying genomic intervals

Marek Wiewiórka1,†, Anna Le�sniewska2,†, Agnieszka Szmurło1,

Kacper Stępie�n2, Mateusz Borowiak2, Michał Okoniewski3

and Tomasz Gambin 1,*

1Institute of Computer Science, Warsaw University of Technology, Warsaw 00-665, Poland, 2Department of

Computer Science, Poznan University of Technology, Pozna�n 60-965, Poland and 3Scientific IT Services, ETH

Zurich, Zürich 8092, Switzerland

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: John Hancock

Received on May 7, 2018; revised on July 23, 2018; editorial decision on November 11, 2018; accepted on November 13, 2018

Abstract

Summary: Efficient processing of large-scale genomic datasets has recently become possible due

to the application of ‘big data’ technologies in bioinformatics pipelines. We present SeQuiLa—a

distributed, ANSI SQL-compliant solution for speedy querying and processing of genomic intervals

that is available as an Apache Spark package. Proposed range join strategy is significantly (�22�)

faster than the default Apache Spark implementation and outperforms other state-of-the-art tools

for genomic intervals processing.

Availability and implementation: The project is available at http://biodatageeks.org/sequila/.

Contact: tgambin@ii.pw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Analyses requiring intersection of genomic intervals as defined in Layer

(2013) are supported by several reported software tools, including

featureCounts (Liao, 2014), samtools (Li, 2009) and GenomicRanges

(Lawrence, 2013). Despite their popularity and ease-of-use, they suffer

from similar performance limitations, thereby making genome-wide

analyses infeasible. On the other hand, recently, there has been an out-

burst of scalable solutions for genomics, including sparkhit (Huang,

2018), ADAM (Massie et al., 2013) and the latest GATK version lever-

aging Apache Spark execution engine. Moreover, adapting relational al-

gebra principles in a form of a declarative Structured Query Language

(SQL) interface for querying genomic datasets is a novel approach

(Kozanitis, 2014; Masseroli, 2015). A proof-of-concept solution that

combines big data techniques and SQL interface for handling large-scale

interval queries was proposed in GenAp (Kozanitis and Patterson, 2016).

This approach, however, requires modifications in the Apache Spark

source code, making this tool hard to maintain and extend; it also dis-

cards low-level optimizations resulting in a suboptimal performance.

Furthermore, as a consequence of introducing the new keywords, it is ef-

fectively non-compliant with ANSI SQL standards, what may cause inte-

gration difficulties. To address the aforementioned issues, we have

developed a SeQuiLa Apache Spark package which is a distributed,

SQL-compliant solution, implementing fast range join computations be-

tween two tables, representing genomic intervals.

2 Materials and methods

2.1 Algorithm and implementation
Consider datasets s1 and s2, storing genomic intervals such as

js1j < js2j. The main idea of the algorithm is to transform s1 into a

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2156

Bioinformatics, 35(12), 2019, 2156–2158

doi: 10.1093/bioinformatics/bty940

Advance Access Publication Date: 14 November 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by guest on 01 M
ay 2021

135

broadcastable structure of an interval forest [a hash map of interval

trees (Cormen et al., 2009), each representing one chromosome].

The intervals from s2 can be efficiently intersected with the interval

forest (Fig. 1A–C).

SeQuiLa package introduces a rule-based optimizer that chooses

the most efficient join strategy based on input data statistics com-

puted in runtime. First, the dataset with smaller row count (s1) is

designated for constructing an interval forest. Then it estimates the

size of dataset s1’ defined as projection of s1 on the set of columns

referenced by SQL query (Fig. 1B). If it fits into dedicated Spark

Driver’s memory (controlled by maxBroadcastSize parameter) the

interval forest is augmented with all columns from s1’

(SeQuiLa_it_all strategy) completing map-side join procedure in

one stage. Otherwise an interval tree is used as an index for add-

itional lookup step before the equi-shuffle-join operation between s1

and s2 (SeQuiLa_it_int strategy).

SeQuiLa has been developed in Scala using the Apache Spark 2.2

environment. In runtime it extends SparkSQL Catalyst optimizer

with custom execution strategies. It implements distributed map joins

using interval forest for inner range join operations. Useful genomic

transformations have been added as User Defined Functions/

Aggregates and exposed to the SQL interface. Furthermore, SeQuiLa

data sources for both BAM and ADAM file formats have been imple-

mented. It can also be integrated with third-party tools using

SparkSQL JDBC driver and with R using sparklyr package. SeQuiLa

is also available as a Docker container, and can be run locally or on a

Hadoop cluster using Yet Another Resource Negotiator (see

Supplementary Material for implementation details).

2.2 Performance evaluation
Testing infrastructure consisted of a six-node Hadoop cluster

(Cloudera Hadoop distribution version 5.12 with Apache Spark

upgraded to version 2.2.1), including four data nodes, a master

node and an edge node with 24 CPUs and 64 GB RAM each. To

prove the vertical and horizontal scalability of our solution and to

compare its performance against existing tools, two tests scenarios

have been executed, i.e. on a single node (edge node) and on a clus-

ter, using a whole-exome and whole-genome alignment datasets

from NA12878 sample, respectively. In each test, the number of

sequencing reads overlapping each one of the pre-defined genomic

regions (i.e. either list of exons or genes specified in BED files) has

been computed. This type of data processing is widely used in both

DNA and RNA sequencing pipelines (see use case examples in

Supplementary Material). We have used featureCounts software as

a baseline for performance and accuracy comparisons. Finally, we

have converted original BAM files into columnar storage format

(ADAM) and performed tests on both file formats to observe its

impact on the performance (see Supplementary Material for

details).

3 Results

SeQuiLa outperforms featureCounts, GenAp and default Spark

join implementation in terms of speed on a single node (1.7–

22.1�) and a cluster (3.2–4.7�) (Fig. 1D–F). SeQuiLa_it_all strat-

egy has proven to perform best in most of the scenarios (no net-

work shuffling required), whereas SeQuiLa_it_int performs

comparable to, or better than, GenAp. All algorithms favor colum-

nar to row oriented file format due to column pruning and disk re-

duction of I/O operations.

4 Conclusions

When run in parallel mode, SeQuiLa is the fastest tool in our bench-

mark, achieving significant performance gain in genomic interval

queries. Further, SeQuiLa has a potential to unlock the doors to

build additional scalable genomic data warehouse solutions, as well

as to implement other higher-level applications for various types of

bioinformatics analyses.

Funding

This work was supported by the National Science Center grants

[OPUS 2014/13/B/NZ2/01248, PRELUDIUM 2014/13/N/ST6/

01843, SONATA 2015/17/D/ST6/04063]; and by the Polish budget

funds for science in years 2016–2019 [Iuventus Plus grant

IP2015019874].

Conflict of Interest: none declared.

A

D E F

B C

Fig. 1. Example of datasets’ structure (s1, s2), including required columns, i.e. chr, start, end (A) and a sample SQL query (B). Broadcasting interval forest to

worker nodes (C). Performance comparison of featureCounts (state-of-the-art single node solution) against GenAp (the only available distributed solution)

and SeQuiLa on single node (D), and on a cluster (E). Speedup characteristics of SeQuiLa and default join implementation in Spark with featureCounts as a

baseline (F)

SeQuiLa 2157

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by guest on 01 M
ay 2021

136

References

Cormen,T. H. et al. (2009) Data structures. In: Introduction to Algorithms.

MIT Press, Cambridge, Massachusetts, pp. 348–354.

Huang,L. et al. (2018) Analyzing large scale genomic data on the cloud with

Sparkhit. Bioinformatics, 34, 1457–1465.

Kozanitis,C. and Patterson,D.A. (2016) GenAp: a distributed SQL interface

for genomic data. BMC Bioinformatics, 17, 63.

Kozanitis,C. et al. (2014) Using Genome Query Language to uncover genetic

variation. Bioinformatics, 30, 1–8.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS Comput. Biol., 9, e1003118.

Layer,R.M. et al. (2013) Binary Interval Search: a scalable algorithm for

counting interval intersections. Bioinformatics, 29, 1–7.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Liao,Y. et al. (2014) featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Masseroli,M. et al. (2015) GenoMetric Query Language: a novel approach to

large-scale genomic data management. Bioinformatics, 31, 1881–1888.

Massie,M. et al. (2013) Adam: genomics formats and processing patterns for

cloud scale computing. Technical Report, No. UCB/EECS-2013-207.

University of California, Berkeley.

2158 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/12/2156/5182295 by guest on 01 M
ay 2021

137

GigaScience, 8, 2019, 1–7

doi: 10.1093/gigascience/giz094
Technical Note

TE CHNICAL NO TE

SeQuiLa-cov: A fast and scalable library for depth of
coverage calculations
Marek Wiewiórka

†
, Agnieszka Szmurło

†
, Wiktor Kuśmirek and

Tomasz Gambin *

Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw,
Poland
∗Correspondence address. Tomasz Gambin, Institute of Computer Science, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw,
Poland. E-mail: tgambin@gmail.com http://orcid.org/0000-0002-0941-4571
†Contributed equally.

Abstract

Background: Depth of coverage calculation is an important and computationally intensive preprocessing step in a variety of
next-generation sequencing pipelines, including the analysis of RNA-sequencing data, detection of copy number variants,
or quality control procedures. Results: Building upon big data technologies, we have developed SeQuiLa-cov, an extension
to the recently released SeQuiLa platform, which provides efficient depth of coverage calculations, reaching >100× speedup
over the state-of-the-art tools. The performance and scalability of our solution allow for exome and genome-wide
calculations running locally or on a cluster while hiding the complexity of the distributed computing with Structured Query
Language Application Programming Interface. Conclusions: SeQuiLa-cov provides significant performance gain in depth of
coverage calculations streamlining the widely used bioinformatic processing pipelines.

Keywords: NGS data analysis; depth of coverage; big data; distributed computing; SQL; CNV-calling; RNA-seq; quality control
for sequencing data

Findings

Introduction

Given a set of sequencing reads and a genomic contig, depth of
coverage for a given position is defined as the total number of
reads overlapping the locus.

The coverage calculation is a frequently performed but time-
consuming step in the analysis of next-generation sequenc-
ing (NGS) data. In particular, copy number variant detection
pipelines require obtaining sufficient read depth of the analyzed
samples [1–3]. In other applications, the coverage is computed to
assess the quality of the sequencing data (e.g., to calculate the
percentage of genome with ≥30× read depth) or to identify ge-
nomic regions overlapped by an insufficient number of reads for
reliable variant calling [4]. Finally, depth of coverage is one of

the most computationally intensive parts of differential expres-
sion analysis using RNA-sequencing data at single-base resolu-
tion [5–7].

A number of tools supporting this operation have been
developed, with 22 of them specified in the Omictools cata-
log [8]. Well-known, state-of-the-art solutions include samtools
depth [9], bedtools genomecov [10], GATK DepthOfCoverage [11],
sambamba [12], and mosdepth [13] (see comparison presented
in Table 1).

Traditionally, these methods calculate the depth of cover-
age using a pileup-based approach (introduced in samtools [9]
and used in GATK [11]), which is inefficient because it iterates
through each nucleotide position at every read in a BAM file. An
optimized, event-bas10] and mosdepth [13]. These algorithms
use only specific ”events,” i.e., start and end of the alignment

Received: 13 December 2018; Revised: 24 May 2019; Accepted: 10 July 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

138

2 SeQuiLa-cov: A fast and scalable library for depth of coverage calculations

Table 1: Comparison of leading coverage calculation software tools

Tool Approach
Functionality

Windows Language
Implementation

Interface
Bases Blocks Intel GKL Parallelism type

samtools Pileup Yes No No C No None Command line
bedtools Events Yes Yes No C++ No None Command line
GATK1 Pileup Yes No No Java Yes Distributed Command line
sambamba Pileup No Yes Yes D No Multithreaded Command line
mosdepth Events No Yes Yes Nim No Multithreaded2 Command line
SeQuiLa-cov Events Yes Yes Yes Scala Yes Distributed Scala, SQL

1GATK DepthOfCoverage has not yet been ported to the latest version, i.e., GATK 4.x.
2Only for BAM decompression.

blocks within each read (Fig. 1A) instead of analyzing every base
of each read, which substantially reduces the overall computa-
tional complexity.

Samtools and bedtools depth of coverage modules do not
provide any support for a multi-core environment. Mosdepth
implements parallel BAM decompression, but its main algo-
rithm remains sequential. Sambamba, on the other hand, pro-
motes itself as a highly parallel tool, implementing depth of
coverage calculations in a map-reduce fashion using multiple
threads on a single node. Regardless of parallelization degree, all
of the aforementioned tools share a common bottleneck caused
by using a single thread for returning results. Finally, GATK was
the first genomic framework to provide support for distributed
computations; however, the DepthOfCoverage method has not
yet been ported to the current software release of the toolkit.

We present the first fully scalable, distributed, SQL-oriented
solution designated for depth of coverage calculations. SeQuiLa-
cov, an extension to the recently released SeQuiLa [14] platform,
runs a redesigned event-based algorithm for the distributed
environment and provides a convenient, SQL-compliant
interface.

Algorithm and implementation
Algorithm

Consider an input data set, read set, of aligned sequencing reads
sorted by genomic position from a BAM file partitioned into n
data slices (read set1, read set2, read setn) (Fig. 1B).

In the most general case, the algorithm can be used in a dis-
tributed environment where each cluster node computes the
coverage for the subset of data slices using the event-based
method. Specifically, for the ith partition containing the set of
reads (read seti), the set of eventsi,chr vectors (where chr is an
index of genomic contig represented in read set) is allocated
and updated, based on the items from read seti. For all reads,
the algorithm parses the concise idiosyncratic gapped align-
ment report (CIGAR) string, and for each continuous alignment
block characterized by start position and length len it incre-
ments by 1 the eventsi,chr(start) and decrements by 1 the value
of eventsi,chr(start + len). To compute the partial coverage vec-
tor for partition i and contig chr, a vector value at the index j is
calculated as follows:

partial coveragei,chr(j) =
∑ j

m=1
eventsi,chr(m).

The result of this stage is a set of partial coveragei,chr vec-
tors distributed among the computation nodes. To calculate the
final coverage for the whole read set, an additional step of cor-

rection for overlaps between the partitions is required. An over-
lap overlapi,chr of length l between vectors partial coveragei,chr

and partial coveragei+1,chr may occur on the partition boundaries
where l tailing genomic positions of partial coveragei,chr are the
same as l heading genomic positions of partial coveragei+1,chr

(see Fig. 1C).
If an overlap is identified, then the coverage values from

the partial coveragei,chr’s l-length tail are added into the par-
tial coveragei+1,chr’s head and subsequently the last l elements
of partial coveragei,chr are removed. Once this correction step is
completed, non-overlapping coveragei,chr vectors are collected
and yield the final coverage values for the whole input read set.

The main characteristic of the described algorithm is its abil-
ity to distribute data and calculations (such as BAM decompres-
sion and main coverage procedure) among the available com-
putation nodes. Moreover, instead of simply performing the full
data reduction stage of the partial coverage vectors, our solution
minimizes required data shuffling among cluster nodes by lim-
iting it to the overlapping part of coverage vectors. Importantly,
the SeQuiLa-cov computation model supports fine-grained par-
allelism at a user-defined partition size in contrast to the tra-
ditional, coarse-grained parallelization strategies that involve
splitting input data at a contig level.

Implementation

We have implemented SeQuiLa-cov in Scala programming lan-
guage using the Apache Spark framework. To efficiently access
the data from a BAM file we have prepared a custom data source
using Data Source API exposed by SparkSQL. Performance of the
read operation benefits from the Intel Genomics Kernel Library
(GKL) [15] used for decompressing the BAM file chunks and from
a predicate push-down mechanism that filters out data at the
earliest stage.

The implementation of the core coverage calculation algo-
rithm aimed to minimize the memory footprint whenever pos-
sible by using parsimonious data types, e.g., ”Short” type instead
of ”Integer,” and to implement an efficient memory allocation
strategy for large data structures, e.g., favoring static Arrays over
dynamic size ArrayBuffers. Additionally, to reduce the overhead
of data shuffling between the worker nodes in the correction for
overlap stage, we used Spark’s shared variables [16] ”accumu-
lators” and ”broadcast variables” (Fig. 1C). Accumulator is used
to gather information about the worker nodes’ coverage vector
ranges and coverage vector tail values, which are subsequently
read and processed by the driver. This information is then used
to construct a broadcast variable distributed to the worker nodes
in order to perform adequate trimming and summing operations
on partial coverage vectors.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

139

Wiewiórka et al. 3

1 2 3 2 1 2 1 2 3 2 1 0

1.5 2 1.5 2.375 1.625 0

chromosome

reads

events

per base coverage

blocks coverage

fixed-length window�coverage

0 1 1 2 2 2 2 2 2 2 2 2 3 2 2 1 1 1 1 1 2 2 2 2 1 2 2 2 3 3 3 3 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0

+1 +1 +1 -1 -1 +1 +1-1 +1 -1 -1 -1

0

overlap� 1_2 overlap 1_2

294 295 296 297 298

overlap 2_3

chr3

read_set_3

overlap 2_3

101 102103 104 294 295 296

294 295 296 297 298chr3

294 295 296 297 298chr3

coverage

for data slices

correction�

for overlaps

final coverage

events_1 partial_coverage_1

1

2
range_and_tail_accumulator

3

final_coverage_1

4
4

overlaps_broadcast�

overlaps_broadcast

Spark driver

worker node

read_set_1

range_and_tail

A

B

C

D

SELECT contig, start, end, coverage

FROM bdg_coverage('read_set','sample1','blocks')

WHERE contig='chr3' AND start <=160;

CREATE TABLE read_set

USING org.biodatageeks.BAMDataSource

OPTIONS (path '/data/samples/sample1.bam');

contig sequencestart flag cigar

read_set_1

read_set_2

sample
sample1

read_set_3

read_set_n

events_n partial_coverage_n

1

final_coverage_n

4
4

overlaps_broadcast

worker node

reads_set_n

3
overlaps_broadcast� 2

range_and_tail

1 0 0 1

1 2 3 ... 100 101 102103 104 101 102 103 104 105 106 ...99chr3 chr3 294 295 296 297 298 ...chr3293 294 295 2964 50

0 0 0 1 0 0 -1 0 0 0 -1 -1

...

events

for data slices

read_set_1

events_1

partial_coverage_1

1 1 1 2 2 2 2 3 3 3 2 2 2 2 1 0

2 2 1 0

1 1 1 2 2 2 2 3 3 3 2 2

1 1 1 2 2 2 2 3 3 3 2 2

101
105
160

163
83
83
99

163
73

1
4
50

97M
98M
53M
55M
53M

135M

GCCAGT

GCCAGT

AACAGT

TGACAGT

CCCAGC

AGCGTAAG

sample1
sample1
sample1
sample1
sample1
sample1
sample1
sample1
sample1
sample1

chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3

156 157 158

1 0 0 0 1 0 0 0 0 -1 0 -1 1 0 0 0

159 160

0 -1

1 1 1 1 2 2 2 2 2 1 1 0 1 1 1 1 1 0

1 1 1 1 2 2 2 2 2 1 1 0 1 1 1

3 3 2 1 2 2 2 2 2 1 1 0 1 1 1

294
296
296

99
163
73

110M
109M
110M

TGACAGT

CCCAGC

AGCGTAAG

407406405404

...

...
...
...

...

...
...
...

contig start end coverage
3
49
98

10099
102101
103103

1
2
3
2
3
2

1
4
50

chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3
chr3

104104
158105
158157

1
2
1

159
160

159
293

0
1

1 0 2 0 0 0 0 0 0 -1 -1 -1

read_set_2

events_2 events_3

partial_coverage_2 partial_coverage_3

partial_coverage_2 partial_coverage_3

coverage_1 coverage_2 coverage_3

1 1 3 3 3 3 3 3 3 2 1 0

1 1 0

1 1 3 3 3 3 3 3 3 2 1 0

2 2 3 3 3 3 3 3 3 2 1 0

... 407406405404

... 407406405404

... 407406405404

partial_coverage_1

101 102 103 104 105 106 ...chr3 293 294 295 296156 157 158159 160

101 102 103 104 105 106 ...chr3 293 294 295 296156 157 158159 160

101 102 103 104 105 106 ...chr3 293156 157 158159 160

1 2 3 ... 100 101 102103 10499chr3 4 50 ...

1 2 3 ... 100 101 102103 10499chr3 4 50 ...

1 2 3 ... 100 101 102103 10499chr3 4 50 ...

Figure 1: SeQuiLa-cov: functionality, algorithm, and implementation. (A) General concept of events-based algorithm for depth of coverage calculation. Given a genomic

chromosome and a set of aligned sequencing reads, the algorithm allocates ”events” vector. Subsequently, it iterates the list of reads and increments/decrements by
1 the values of the events vector at the indexes corresponding to start/end positions of each read. The depth of coverage for a genomic locus is calculated using the
cumulative sum of all elements in the events vector preceding the specified position. The algorithm may produce 3 typically used coverage types: (i) per-base coverage,
which includes the coverage value for each genomic position separately, (ii) blocks, which lists adjacent positions with equal coverage values merged into a single

interval, and (iii) fixed-length windows coverage, which generates a set of equal-size, non-overlapping and tiling genomic ranges and outputs the arithmetic mean
of base coverage values for each region. (B) Provided SQL API to interact with NGS data. The first statement creates a relational table read set over compressed BAM
files using the provided custom Data Source, whereas the second statement demonstrates the use of the bdg coverage function to calculate depth of coverage for a
specified sample. The presented call for coverage method takes sample identifier (sample1) and result type (blocks) as input parameters. bdg coverage is implemented

as a table-valued function. Therefore, it outputs a table as a result, allowing for customizing a query using Data Manipulation Language, e.g., in the SELECT or WHERE
clause. For the purpose of this example, we assume that the BAM file for sample1 contains only reads from chr3. (C) Concept of distributed version of events-based
algorithm. Assuming that we run our calculations in a distributed environment, the computation nodes do not work on the whole input data set (table read set) but on
n smaller data partitions (slice1, slice2, ..., slicen), each containing a subset of input aligned reads. The algorithm first calculates the partial events vector for available

data slices and subsequently produces a corresponding partial partial coverage vector. Because of the possibility of overlapping of ranges between 2 consecutive data
slices, an additional correction step needs to be performed. When an overlap is identified, the corresponding coverage values from the preceding vector’s tail are cut
and added to the head values of the subsequent vector. On the figure, 2 overlaps are shown, one of them situated between partial coverage1 and partial coverage2

(overlap12 of length 4) encompassing positions chr3:101–104. The coverage values from partial coverage1 for overlap12 are removed from partial coverage1 and added
to the head of partial coverage2. As a result, a set of non-overlapping coverage vectors are calculated, which is further integrated into the depth of coverage for the
whole input data set. (D) Implementation details of SeQuiLa-cov. We have used the Apache Spark environment, where a single driver node runs the high-level driver
program, which schedules tasks for multiple worker nodes. On each worker node, a set of data partitions are accessed and manipulated in order to generate events

and partial coverage vectors. To gather data about partial coverage vectors’ ranges along with tailing coverage values, and to distribute data needed for rearranging
coverage vector values and ranges, we have used Spark’s shared variables ”accumulator” and ”broadcast,” respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

140

4 SeQuiLa-cov: A fast and scalable library for depth of coverage calculations

Functionality
Supported coverage result types

SeQuiLa-cov features 3 distinct result types: ”per-base,” ”blocks,”
and ”fixed-length windows” coverage (Fig. 1A). For per-base, the
depth of coverage is calculated and returned for each genomic
position, making it the most verbose output option. The method
producing block-level coverage (blocks) involves merging adja-
cent genomic positions with equal coverage values into genomic
intervals. As a consequence, fewer records than in the case of
per-base output type are generated, with no information loss.
For the fixed-length windows the algorithm generates set of
fixed-length, tiling, non-overlapping genomic intervals and re-
turns the arithmetic mean of coverage values over positions
within each window.

ANSI SQL compliance

The SeQuiLa-cov solution promotes SQL as a data query and
manipulation language in genomic analysis. Data flows are per-
formed in SQL-like manner through the custom data source,
supporting the convenient Create Table as Select and Insert as
Select methods. SeQuiLa-cov provides a table abstraction over
existing alignment files, with no need of data conversion, which
can be further queried and manipulated in a declarative way.
The coverage calculation function bdg coverage, as described
in the Algorithm subsection, has been implemented as a table-
valued function (Fig. 1D).

Execution and integration options

SeQuiLa-cov can be used as an extension to Apache Spark in the
form of an external JAR dependency or can be executed from the
command line as a Docker container. Both options can be run
locally (on a single node) or on a Hadoop cluster using YARN (see
project documentation for sample commands). The tool accepts
BAM/CRAM files as input and supports processing of short and
long reads. The tabular output of the coverage computations can
be stored in various file formats, e.g., binary (ORC, Parquet), as
well as text (CSV, TSV). The tool can be integrated with state-of-
the-art applications through text files or can be used directly as
an additional library in bioinformatics pipelines implemented in
Scala, R, or Python.

Benchmarking

We have benchmarked SeQuiLa-cov solutions with leading
software for depth of coverage calculations, specifically sam-
tools depth, bedtools genomeCov, sambamba depth, and mos-
depth (results of DepthOfCOverage from outdated GATK ver-
sion are available at http://biodatageeks.org/sequila/benchma
rking/benchmarking.html#depth-of-coverage). The tests were
performed on the aligned whole-exome sequencing (WES) and
whole-genome sequencing (WGS) reads from the NA12878
sample (see Methods for details) and aimed at calculating
blocks and window coverage. To compare the performance
and scalability of each solution, we executed calculations for
1, 5, and 10 cores on a single computation node (see Ta-
ble 2).

Samtools depth and bedtools genomeCov are both natively
non-scalable and were run on a single thread only. Exome-
wide calculations exceeded 10 minutes and genome-wide anal-
yses took >2 hours in the case of samtools, while bedtools’

performance was substantially worse, i.e., ∼1.9× for WES and
∼4.7× for WGS. Sambamba depth claims that it can take ad-
vantage of fully parallelized data processing with the use of
multithreading. However, our results revealed that even when
additional threads were used, the total execution time of
coverage calculations remained nearly constant and greater
than samtools’ result. Mosdepth shows substantial speedup
(∼1.3×) against samtools when using a single thread. This per-
formance gain increases to ∼3.7× when using 5 decompres-
sion threads; however, it does not benefit from adding addi-
tional CPU power. In the case of fixed-length window cover-
age mosdepth achieves more than ∼1.3 speedup against sam-
bamba.

SeQuiLa-cov achieves performance similar to mosdepth
when run using a single core. However, SeQuiLa-cov is ∼1.3×
and ∼2.5× as fast as mosdepth when using 5 and 10 CPU cores,
respectively, demonstrating its better scalability. Similar per-
formance is observed for both block and fixed-length window
methods.

To fully assess the scalability profile of our solution, we
performed additional tests in a cluster environment (see Meth-
ods for details). Our results show that when utilizing additional
resources (i.e., >10 CPU cores), SeQuiLa-cov is able to reduce the
total computation time to 15 seconds for WES and <1 minute
for WGS data (Fig. 2). The scalability limit is achieved for 200 and
∼500 CPU cores for WES and WGS data, respectively.

To evaluate the impact of the Intel GKL library on the deflate
operation (BAM bzgf block decompression), we performed block
coverage calculations on WES data on 50 CPU cores. The results
showed on average ∼1.18× speedup when running with the Intel
GKL deflate implementation.

Finally, our comprehensive functional unit testing showed
that the results calculated by SeQuiLa-cov and samtools depth
are identical.

Conclusions

Recent advances in big data technologies and distributed com-
puting can contribute to speeding up both genomic data pro-
cessing and management. Analysis of large genomic data sets
requires efficient, accurate, and scalable algorithms to perform
calculations using the computing power of multiple cluster
nodes. In this work, we show that with a sufficiently large clus-
ter, genome-wide coverage calculations may last <1 minute and
at the same time be >100× faster than the best single-threaded
solution.

Although the tool can be integrated with non-distributed
software, our primary aim is to support large-scale processing
pipelines, and the full advantage of SeQuiLa-cov’s scalability and
performance will be available once it is deployed and executed in
a distributed environment. We expect that there will be a grow-
ing number of scalable solutions (Big Data Genomics project [17]
with tools DECA and Cannoli as well as GATK4 [18]) that can take
advantage of reading input data directly from distributed storage
systems.

SeQuiLa-cov is one of the building blocks of the SeQuiLa
[14] ecosystem, which initiated the move towards efficient, dis-
tributed processing of genomic data and providing SQL-oriented
API for convenient and elastic querying. We foresee that follow-
ing this direction will enable the evolution of genomic data anal-
ysis from file-oriented to table-oriented processing.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

141

Wiewiórka et al. 5

Table 2: Benchmarking leading solutions against SeQuiLa-cov on WES/WGS data in execution time of block and window calculations

Data Operation type Cores samtools bedtools sambamba mosdepth SeQuiLa-cov

WGS Blocks 1 2h 14m 58s1 10h 41m 27s 2h 44m 0s 1h 46m 27s 1h 47m 5s
5 2h 47m 53s 36m 13s 26m 59s

10 2h 50m 47s 34m 34s 13m 54s
Fixed-length windows 1 1h 46m 50s 1h 22m 49s 1h 24m 8s

5 1h 41m 23s 20m 3s 18m 43s
10 1h 50m 35s 17m 49s 9m 14s

WES Blocks 1 12m 26s1 23m 25s 25m 42s 6m 43s 6m 54s
5 25m 46s 2m 25s 1m 47s

10 25m 49s 2m 20s 1m 4s
Fixed-length windows 1 14m 36s 6m 11s 6m 29s

5 14m 54s 2m 8s 1m 42s
10 14m 40s 2m 14s 1m 1s

Both samtools and bedtools calculate coverage using only a single thread; however, their results differ significantly, with samtools being approximately twice as fast.
Sambamba positions itself as a multithreaded solution, although our tests revealed that its execution time is nearly constant, regardless of the number of CPU cores
used, and even twice as slow as samtools. Mosdepth achieved speedup against samtools in blocks coverage and against sambamba in windows coverage calculations;

however, its scalability reaches its limit at 5 CPU cores. Finally, SeQuiLa-cov achieves performance nearly identical to that of mosdepth for the single core, but the
execution time decreases substantially for greater number of available computing resources, which makes this solution the fastest when run on multiple cores and
nodes.
1Per-base results are treated as block output. Samtools lacks the functionality of block coverage calculations; however, we included this tool in our benchmark for
completeness, treating its per-base results as block outcome assuming that both result types require nearly the same resources.

blocks fixed−length windows

W
G

S
W

E
S

1 5 10 25 50 100 200 300 400 500 1 5 10 25 50 100 200 300 400 500

0

2500

5000

7500

10000

0

250

500

750

1h
 4

7m
 5

s

1h
 4

6m
 2

7s

2h
 1

4m
 5

8s

26
m

 5
9s

36
m

 1
3s

13
m

 5
4s

34
m

 3
4s

5m
 8

s

2m
 4

7s

1m
 5

5s

1m
 1

8s

1m
 9

s

1m
 2

s

58
s

6m
 5

4s

6m
 4

3s

12
m

 2
6s

1m
 4

7s2m
 2

5s

1m
 4

s

2m
 2

0s

27
s

20
s

17
s

14
s

14
s

14
s

14
s

1h
 2

4m
 8

s

1h
 2

2m
 4

9s

18
m

 4
3s

20
m

 3
s

9m
 1

4s17
m

 4
9s

3m
 5

8s

2m
 7

s

1m
 1

4s

51
s

45
s

44
s

42
s

6m
 2

9s

6m
 1

1s

1m
 4

2s

2m
 8

s

1m
 1

s2m
 1

4s

26
s

20
s

15
s

15
s

16
s

17
s

18
s

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

samtools mosdepth SeQuiLa−cov

Figure 2: Performance and scalability comparison of samtools, mosdepth, and SeQuiLa-cov. Each experiment setting was repeated several times. Bar height and error
bars indicate mean and range of execution time, respectively. The best pileup-based solution is definitely slower (2 times for WGS calculations) than both event-based

solutions, which clearly shows the superiority of the latter one. Mosdepth execution time scales up to 5 cores; afterwards it shows no further gain in performance.
SeQuiLa-cov has nearly the same execution time results as mosdepth for both block and window calculations for a single core, but scales out desirably using all 500
CPU cores on cluster nodes and at the same time performing WGS calculations in <1 minute.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

142

6 SeQuiLa-cov: A fast and scalable library for depth of coverage calculations

Methods
Test data

We tested our solution using reads from the NA12878 sample,
which were aligned to the hg18 genome. The WES data con-
tained >161 million reads (17 GB of disk space) and WGS data
included >2.6 billion reads (272 GB of disk space). Both BAM files
were compressed at the default BAM compression level (5).

Testing environment

To perform comprehensive performance evaluation, we set up a
test cluster consisting of 28 Hadoop nodes (1 edge node, 3 master
nodes, and 24 data nodes) with Hortonworks Data Platform 3.0.1
installed. Each data node has 28 cores (56 with hyper-threading)
and 512 GB of RAM; YARN resource pool has been configured
with 2,640 virtual cores and 9,671 GB RAM.

Investigated solutions

In our benchmark we used the most recent versions of the in-
vestigated tools, i.e., samtools version 1.9, bedtools 2.27.0, sam-
bamba 0.6.8, mosdepth version 0.2.3, and SeQuiLa-cov version
0.5.1.

Availability of source code and requirements

• Project name: SeQuiLa-cov
• Project home page: http://biodatageeks.org/sequila/
• Source code repository: https://github.com/ZSI-Bio/bdg-sequi
la
• Operating system: Platform independent
• Programming language: Scala
• Other requirements: Docker
• License: Apache License 2.0
• RRID: SCR 017220

Availability of supporting data and materials

The Docker image is available at https://hub.docker.com/r/bioda
tageeks/. Supplementary information on benchmarking proce-
dure as well as test data are publicly accessible at the project
documentation site http://biodatageeks.org/sequila/benchmark
ing/benchmarking.html#depth-of-coverage. An archival copy of
the code and supporting data is also available via the Giga-
Science database GigaDB [19].

Abbreviations

API: Application Programming Interface; BAM: Binary Alignment
Map; CPU: central processing unit; CSV: comma-separated val-
ues; GKL: Genomics Kernel Library; NGS: next-generation se-
quencing; ORC: optimized row columnar; RAM: random access
memory; SQL: Structured Query Language; TSV: tab-separated
values; YARN: Yet Another Resource Negotiator; WES: whole-
exome sequencing; WGS: whole-genome sequencing.

Competing interests

The authors declare that they have no competing interests.

Funding

This work has been supported by the Polish budget funds for
science in years 2016–2019 (Iuventus Plus grant IP2015 019874),
as well as Polish National Science Center grant Preludium
2014/13/N/ST6/01843.

Authors’ contributions

M.W.: conceptualization, formal analysis, investigation, soft-
ware, and writing. A.S.: data curation, formal analysis, investiga-
tion, software, visualization, and writing. W.K.: formal analysis,
investigation, writing. T.G.: formal analysis, supervision, investi-
gation, visualization, and writing. All authors approved the final
manuscript.

References

1. Fromer M, Purcell SM. Using XHMM software to detect copy
number variation in whole-exome sequencing data. Curr
Protoc Hum Genet 2014;81:1–21.

2. Jiang Y, Oldridge DA, Diskin SJ, et al. CODEX: a normaliza-
tion and copy number variation detection method for whole
exome sequencing. Nucleic Acids Res 2015;43(6):e39.

3. Gambin T, Akdemir ZC, Yuan B, et al. Homozygous
and hemizygous CNV detection from exome sequencing
data in a Mendelian disease cohort. Nucleic Acids Res
2017;45(4):1633–48.

4. Okonechnikov K, Conesa A, Garcı́a-Alcalde F. Qualimap 2:
advanced multi-sample quality control for high-throughput
sequencing data. Bioinformatics 2015;32(2):btv566.

5. Frazee AC, Sabunciyan S, Hansen KD, et al. Differential ex-
pression analysis of RNA-seq data at single-base resolution.
Biostatistics 2014;15(3):413–26.

6. Nellore A, Collado-Torres L, Jaffe AE, et al. Rail-RNA: scalable
analysis of RNA-seq splicing and coverage. Bioinformatics
2016;33(24):btw575.

7. Collado-Torres L, Nellore A, Frazee AC, et al. Flexible ex-
pressed region analysis for RNA-seq with derfinder. Nucleic
Acids Res 2017;45(2):e9–e9.

8. Coverage/Depth analysis bioinformatics tools | Next-
generation sequencing analysis - OMICtools. https:
//omictools.com/depth-of-coverage-category.Accessed
24 May 2019.

9. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

10. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26(6):841–
2.

11. McKenna A, Hanna M, Banks E, et al. The Genome
Analysis Toolkit: a MapReduce framework for analyz-
ing next-generation DNA sequencing data. Genome Res
2010;20(9):1297–303.

12. Tarasov A, Vilella AJ, Cuppen E, et al. Sambamba: fast
processing of NGS alignment formats. Bioinformatics
2015;31(12):2032–4.

13. Pedersen BS, Quinlan AR. Mosdepth: quick coverage
calculation for genomes and exomes. Bioinformatics
2018;34(5):867–8.

14. Wiewiórka M, Leśniewska A, Szmurło A, et al. SeQuiLa: an
elastic, fast and scalable SQL-oriented solution for process-
ing and querying genomic intervals. Bioinformatics 2019 25,
12, 2156–8.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

143

Wiewiórka et al. 7

15. Guilford J, Powley G, Tucker G, et al. Accelerating the com-
pression and decompression of genomics data using GKL
provided by Intel. 2017. https://www.intel.com/content/da
m/www/public/us/en/documents/white-papers/accelerati
ng-genomics-data-gkl-white-paper.pdf. Accessed 24 May
2019.

16. Zaharia M, Chowdhury MJ, Franklin M, et al. Spark: Cluster
computing with working sets. In: HotCloud’10 Proceedings
of the 2nd USENIX conference on Hot Topics in Cloud Com-
puting, Boston, MA, 2010. Berkeley, CA: USENIX Association;
2010:10.

17. Massie M, Nothaft F, Hartl C, et al.. Adam: Genomics Formats
and Processing Patterns for Cloud Scale Computing. Univer-
sity of California, Berkeley, Technical Report No. UCB/EECS-
2013-207; 2013. https://www2.eecs.berkeley.edu/Pubs/Tech
Rpts/2013/EECS-2013-207.html. Accessed 23 July 2019.

18. GATK. https://software.broadinstitute.org/gatk/gatk4. Ac-
cessed 24 May 2019.

19. Wiewiórka M, Szmurło A, Kuśmirek W, et al.. Support-
ing data for “SeQuiLa-cov: a fast and scalable library
for depth of coverage calculations.” GigaScience Database
2019.http://dx.doi.org/10.5524/100617. Accessed 23 July 2019.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/8/8/giz094/5543653 by guest on 01 M

ay 2021

144

Genome analysis

Cloud-native distributed genomic pileup operations

Marek Wiewiórka1,†, Agnieszka Szmurło1,†, Paweł Stankiewicz2 and

Tomasz Gambin 1,*

1Institute of Computer Science, Warsaw University of Technology, Warsaw, Warsaw 00-661, Poland and 2Department of Molecular

and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Peter Robinson

Received on August 27, 2022; revised on November 16, 2022; editorial decision on December 11, 2022; accepted on December 13, 2022

Abstract

Motivation: Pileup analysis is a building block of many bioinformatics pipelines, including variant calling and geno-
typing. This step tends to become a bottleneck of the entire assay since the straightforward pileup implementations
involve processing of all base calls from all alignments sequentially. On the other hand, a distributed version of the
algorithm faces the intrinsic challenge of splitting reads-oriented file formats into self-contained partitions to avoid
costly data exchange between computational nodes.

Results: Here, we present a scalable, distributed and efficient implementation of a pileup algorithm that is suitable
for deploying in cloud computing environments. In particular, we implemented: (i) our custom data-partitioning al-
gorithm optimized to work with the alignment reads, (ii) a novel and unique approach to process alignment events
from sequencing reads using the MD tags, (iii) the source code micro-optimizations for recurrent operations, and (iv)
a modular structure of the algorithm. We have proven that our novel approach consistently and significantly outper-
forms other state-of-the-art distributed tools in terms of execution time (up to 6.5� faster) and memory usage (up to
2� less), resulting in a substantial cloud cost reduction. SeQuiLa is a cloud-native solution that can be easily
deployed using any managed Kubernetes and Hadoop services available in public clouds, like Microsoft Azure
Cloud, Google Cloud Platform, or Amazon Web Services. Together with the already implemented distributed range
join and coverage calculations, our package provides end-users with a unified SQL interface for convenient analyses
of population-scale genomic data in an interactive way.

Availability and implementation: https://biodatageeks.github.io/sequila/

Contact: tomasz.gambin@pw.edu.pl

1 Introduction

1.1 State-of-the-art
The sorted collection of the aligned sequencing reads can be trans-
formed into a set of pileup records, also known as a coverage pos-
ition summary. This format summarizes information about the base
calls in all genomic positions from the reads aligned to a reference
sequence, including total depth of coverage, non-reference (alterna-
tive) bases, and base qualities (see detailed definition in http://www.
htslib.org/doc/samtools-mpileup.html). Pileup format was designed
to provide the evidence of the single-nucleotide variants or the short
insertions/deletions at given genomic positions. It is commonly used
as an entry point to the well-established variant calling pipelines (Li,
2011) as well as to novel approaches to variant detection frame-
works based on the neural networks (Luo et al., 2020) or other
methods, e.g. the binomial model, partial-order alignment, and de

Bruijn graph local assembly (Liu et al., 2021) in fast variant calling.
Coverage position summary is also used for identification of somatic
mutations and copy number variation (Koboldt et al., 2012).

Samtools suite (Li et al., 2009) includes the mpileup tool, a gold
standard for both data format and correctness of pileup calculations;
however, it is a single-threaded program that does not provide the
scalability feature (Sater et al., 2020).

Research developments in the bioinformatics field emphasize a
common need to use a technology that allows distributing long-
lasting big data tasks into the multiple computing nodes or in the
cloud computing infrastructure (Yuan and Wildish, 2020). In the re-
cent Genome Analysis Toolkit (GATK, McKenna et al., 2010) ver-
sion, several programs (including pileup calculations) have been
implemented in a distributed manner ready to be run on the Apache
Spark cluster (Zaharia et al., 2010). Other research studies confirm
that big data programming paradigms can be successfully applied to

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2022, 1–9

https://doi.org/10.1093/bioinformatics/btac804

Advance Access Publication Date: 14 December 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

145

many genomic analyses (Capuccini et al., 2020; Guo et al., 2018;
Wiewiórka et al., 2017, 2018) including variant calling (Ahmad
et al., 2021). The analysis of the ever-increasing genomic datasets
involves significant financial investments and administrative efforts
to maintain secure and fault-tolerant storage solutions as well as fast
and scalable processing units. To minimize those efforts, medical
clinics and research centers consider migrating bioinformatics pipe-
lines and custom analyses to private or public cloud infrastructure.
The evolution towards cloud architecture is embraced by the widely
used bioinformatics products both open-source (e.g. GATK) and
commercial (e.g. DNA Nexus, Terra) (Koppad et al., 2021).

Although significant progress has been made, there are still areas
in bioinformatics analyses that are not easily transferable to the dis-
tributed and cloud environments with traditionally used sets of
tools.

1.2 Contribution
In the previous works, we proved that it was possible to implement
very efficient and highly scalable tools, facilitating time-consuming
common bioinformatics operations: interval joins [SeQuiLa-int al-
gorithm (Wiewiórka et al., 2018), available in SeQuiLa package
since version 0.3.0] and coverage calculations [SeQuiLa-cov algo-
rithm (Wiewiórka et al., 2019), available in the SeQuiLa package
since version 0.4.0]. In the next essential release of SeQuiLa (0.6.11)
in 2021, we updated the code base to run on Apache Spark 3.1.2.
We have also fixed the reported issues and improved the existing
features; however, no major new functionalities have been intro-
duced since version 0.4.0 (see detailed release history on https://
github.com/biodatageeks/sequila/tags).

In the described current version (1.0.0), we have significantly
extended the previously implemented functionality of the SeQuiLa
package by introducing a novel distributed algorithm for summariz-
ing reads using the Compact Idiosyncratic Gapped Alignment
Report (CIGAR) strings and MD tags in a pileup format (SeQuiLa-
pileup, Algorithm 2) (see Table 1). We also propose a custom data
partitioning mechanism optimized to work with the alignment reads
(Algorithm 1) as it significantly influences the performance of all
subsequent steps by eliminating the need for data-exchange among
partitions. At the same time, it enables single-pass over input data
and lowers memory requirements since no intermediate data caching
is required.

We have developed the algorithm in a modular way, enabling
additional reduction of the execution time in two specific scenarios
(when compared to regular SeQuiLa-pileup method), i.e. (i) pileup
summary without information on base-qualities (denoted as
SeQuiLa-pileup-cov-only) and (ii) depth of coverage information
only (denoted as SeQuiLa-pileup-cov-only). Since the functionality
of SeQuiLa-pileup-cov-only is the same as the one provided by the
previously published SeQuiLa-cov tool (Wiewiórka et al., 2019) and
the performance of the new algorithm (SeQuiLa-pileup-cov-only) is
superior (see Section 3), we now recommend usage of SeQuiLa-
pileup-cov-only for coverage calculations instead of SeQuiLa-cov
while working with the current version of the SeQuiLa package
(1.0.0).

Besides the custom partitioner and pileup algorithm, the new
version of the SeQuiLa package provides Terraform modules,
Docker images, and code examples that facilitate straightforward
deployment in the public clouds infrastructure.

2 Materials and methods

2.1 Rationale
The foundations for the distributed pileup algorithm are based on
three key observations.

Firstly, the majority of bases in the aligned sequencing reads are
concordant with the reference sequence. Therefore, we designed our
algorithm to use both CIGAR strings, representing spliced alignment
operations and MD tags, encoding mismatched and deleted refer-
ence bases, as defined in https://samtools.github.io/hts-specs/
SAMv1.pdf and https://samtools.github.io/hts-specs/SAMtags.pdf
accordingly. The use of the above mentioned strings in conjunction
allows to handle deletions, insertions, and substitutions without
decoding and parsing the entire read sequence and base qualities. To
the best of our knowledge, it is the only algorithm that takes advan-
tage of this information for pileup construction.

Secondly, our pileup computation is divided into four units of
work: (i) coverage computation, (ii) identification of non-reference
base calls, (iii) collection of base qualities and (iv) output projection.
This decomposition allows us to reduce computational complexity
by skipping certain steps that are not required.

Finally, the most limiting factor of performance and scalability
for any distributed processing is the data exchange among the work-
er nodes that always requires costly data serialization as well as net-
work transfer. Therefore, we propose a new data partitions
coalescing mechanism, which guarantees proper handling of reads
overlapping more than one partition without the need of data shuf-
fling. In addition, we use BAM indexes for efficient partition boun-
daries adjustment and thus significantly reducing input/output (IO)
operations.

2.2 Algorithm
2.2.1 Defining partitions

Consider an input sorted collection of the aligned sequencing reads
R divided into n partitions by the underlying file system (Fig. 1A).
The set of all partitions constitutes an immutable collection of data,
i.e. resilient distributed dataset (RDD) which is the main logical unit
of data in the Apache Spark framework.

For each partition, we calculate two values: lower and upper
bounds that create self-contained virtual read partitions
(V1 ¼ lb1� ub1; V2 ¼ lb2� ub2, etc, from Fig. 1C, Algorithm 1).
For clarity, in pseudo-code we assume that all reads are aligned to a
single chromosome.

This information is further required for changing the default
Apache Spark partitioning schema (P1, P2, . . ., PN—see Fig. 1A),
creating new coalesced partitions (C1, C2, . . ., CN—see Fig. 1D).
Within each coalesced partition, the algorithm processes only the
reads overlapping with the corresponding virtual partition (see

Table 1. SeQuiLa package release history

Version (year) Publication Interval joins Coverage Pileup Other features

0.3.0 (2018) Wiewiórka et al. (2018) int — — —

0.4.0 (2019) Wiewiórka et al. (2019) int cov — —

0.6.11b (2021) — int cov —

1.0.0 (2022) — int pileup-cov-onlya pileupa reads-aware partitio-

ninga, cloud

recipesa

Note: int, interval joins (SeQuiLa-int); cov, coverage calculations (SeQuiLa-cov); pileup-cov-only, coverage calculations using simplified pileup algorithm

(SeQuiLa-pileup-cov-only); pileup, pileup calculations (SeQuiLa-pileup).
aNovel tools and features described in this manuscript.
bTechnical update (Apache Spark update and fixed reported issues).

2 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

146

Fig. 1E). Note that our approach is very lightweight—it dynamically
calculates boundaries for virtual partitions, which can be considered
as view upon original Spark partitions. Unlike GATK which divides
input data into fixed length multikilobase-size pieces called shards,
we do not introduce any other level of data splitting and push all
computations down to the partition level.

2.2.2 Calculating coverage and alternative alleles

For each virtual partition, the program generates an aggregate object
holding: (i) an array of alignment events (i.e. start and end of align-
ment) which is gathered for the event-based coverage calculations,
(ii) a map of alternative bases count calculated using read MD tag
and (iii) an interval tree structure of succinct read representation—
ReadSummary (i.e. start, end, CIGAR derived configuration) used
for further base qualities calculations. The program calculates base
qualities only for the positions where at least one alternative base is
present (Algorithm 2).

2.2.3 Merging and rendering the results

Once all reads in each virtual partition are analyzed, the program
calculates the set of final pileup records. Depending on the configur-
ation, our modular pileup algorithm can generate different outputs:
full pileup (SeQuiLa-pileup), pileup without base qualities (SeQuila-
pileup-no-qual) or depth of coverage only (SeQuiLa-pileup-cov-
only).

2.3 Technical design
Our algorithm is implemented as a plugin to Apache Spark Catalyst
optimizer (Armbrust et al., 2015). We used its three extension
points: (i) SQL Analyzer—to register new table-valued functions, (ii)
Planner—to add our optimized execution strategies for pileup calcu-
lations and (iii) Logical Optimizer—to detect
CreateDataSourceTableAsSelectCommand and
InsertIntoHadoopFsRelationCommand actions and apply optimiza-
tions for direct vectorized writes into the Optimized Row Columnar
(ORC) files (Fig. 2).

We designed the relational model to represent alignments and
pileup function results as proposed in Sun et al. (2018) and Smith
et al. (2021). Our package provides both SQL (Structured Query
Language) and Dataframe programming interfaces for the Scala and
Python (https://github.com/biodatageeks/pysequila) languages.

For reading Binary Alignment Map (BAM) and Compressed
Reference-oriented Alignment Map (CRAM) files our solution can
use Hadoop-BAM (Niemenmaa et al., 2012) or disq libraries as con-
figured by the end-user. For better support of the CRAM files that
have been recently added to the HTSJDK library, we extended the
Hadoop-BAM project (https://github.com/biodatageeks/Hadoop-
BAM). Also, minor changes required for serialization of genomic
intervals parameters were added to the disq (https://github.com/
mwiewior/disq) library. For saving output we support not only
ORC but also Parquet file format (Ivanov and Pergolesi, 2020). In
our code, we re-used partition coalescing mechanism as imple-
mented in the GATK.

2.4 Essential optimizations
Our main goal was to deliver a fast, distributed and scalable imple-
mentation of the pileup algorithm. In additional to the already pre-
sented novel algorithm, we highlight other essential implementation
decisions that improve overall software performance. They can be
grouped into three main categories: (i) optimization of distributed

Algorithm 2 SeQuiLa-pileup

Require: ref: Reference sequence

conf: Configuration

PartitionSet, RDD (Resilient Distributed Dataset) contain-

ing all reads’ partitions

procedure CALCULATEPILEUP(ref, conf)

2: for p 2 PartitionSet do

aggregates :¼ assembleAggregatesðp; conf Þ
4:

generatePileupRecordsðaggregates; ref ; conf ;p:lb; p:ubÞ
end for

6: end procedure

procedure ASSEMBLEAGGREGATES(partition, conf)

8: agg :¼ initAggregateForContig

for read 2 partition do

10: agg:events :¼ calculateCoverageEventsðreadÞ
if conf :includeAlts then

12: agg:alts þ¼ calculateAltsðagg; read;MDTagÞ
agg:treeCache þ¼ createReadSummary(agg, read)

14: end if

end for

16: end procedure

procedure GENERATERECORDS(aggregates; ref ; conf ; lb;ub)

18: for a 2 aggregates do

for pos 2 0::ub do

20: sum :¼ cumulativeSumða:events; posÞ
if pos >¼ lb and coverageChange or hasAlt then

22: if conf :includeQuals then

quals :¼ calculateQualsða:treeCache;posÞ
24: end if

createRowðsum; ref ; a:alts;qualsÞ
26: end if

end for

28: end for

end procedure

Algorithm 1 Reads-aware partitioning: Calculating lower(lb)

and upper(ub) bounds for self-contained read partitions

Require: P, RDD (Resilient Distributed Dataset) containing

all reads’ partitions

1. for i 2 ð0; lengthðPÞ � 1Þ do

2. rðiÞ pðiÞð0Þ get the first read in i partition

3. lbðiÞ rðiÞstart get the lower bound of i partition

4. end for

5. for j 2 ð0; lengthðPÞ � 1Þ do construct interval tree of all

reads overlapping any of lbðjÞstart

6. it IntervalTreeðpðiÞ:getReadsOverlappingðlbðjÞstartÞÞ
7. end for

8. for i 2 ð0; lengthðPÞ � 1Þ do

9. if i 6¼ ðlengthðPÞ � 1Þ then

10. ubðiÞpos maxðit:overlappersðlbðiþ 1ÞposÞÞ
11. else

12. ubðiÞpos Int:maxValue

13. end if

14. if i > 0 then

15. lbðiÞ ubði� 1Þ
16. end if

17. end for

18. return (lb, ub)

Cloud-native distributed genomic pileup operations 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

147

processing, (ii) Scala source code micro-optimizations, and (iii) out-
put vectorization and fine-tuning.

2.4.1 Optimization of distributed processing

In the straightforward approach where the default partitioning is
used, pileup implementation in Apache Spark would to be split into
two stages with a data shuffle step in between. This would require
either explicit caching of the intermediate results from the first one
or at least partial recomputing of the evicted partitions to get the
final results. Implementation of a custom partitioning mechanism
(Algorithm 1) to appropriately split data and determine the bounda-
ries for each split was essential to achieve a single-pass solution
without any extra data exchange between the executors or caching
intermediary results.

2.4.2 Source code micro-optimizations

We have observed an apparent speedup when using an interval tree
to store a short representation of reads (ReadSummary) since data
retrieval from this structure is performed frequently with interval
conditions. After analyzing the profiling results in a form of flame
graphs obtained with async-profiler (Nisbet et al., 2019), we identi-
fied the most time-consuming and frequently invoked methods, such
as calculation of the relative position in a read for a given genomic
coordinate, and re-implemented them in the state-aware manner,
thus eliminating traversing collection on each call. Similarly, we sub-
stituted computationally expensive CIGAR parsing and interpret-
ation with fast lookups to lazily evaluated custom objects with
derived cigar configuration with quick checks for existence of clip
(and its length) or deletion, as well as deletion and insertion
positions.

2.4.3 Output and auxiliary optimizations

The default output generation mechanism, which accounted for
around 30% of the total processing time of our algorithm turned
out to be another bottleneck. Therefore, we have implemented two
novel approaches for optimizing output rendering.

Firstly, we have developed a custom direct pileup record projec-
tion to Apache Spark’s internal binary row representation applying
several micro-optimizations, e.g. casting reference bases and contig
names to bytes and caching them in map to avoid repeating this task
for each record. This mechanism can be used for further processing
pileup rows within Spark-SQL engine as well as for persisting the
results in any supported file format.

The second optimization is intended for improving performance
of saving the results in ORC file format only. Inspired by the idea of
direct-path load introduced in the relational database management
systems, in particular in Oracle database (Heller, 2019), we imple-
mented a mechanism that enables bypassing Spark’s internal data
representation and provides the support for vectorized row batches
(as proposed in Shen et al., 2021) that are used for producing ORC
output.

Other auxiliary optimizations including external dependencies
configuration and environment setup were evaluated, and their im-
pact on the overall performance is described in Section 3.

2.5 Cloud readiness
The increasing availability of cloud computing services for research
is gradually changing the way scientific applications are developed,
deployed and run (Vaillancourt et al., 2020). To ensure portability
and reproducibility of SeQuiLa-based data processing, we followed
the Infrastructure as Code (Guerriero et al., 2019) and DevOps
principles for setting up the computing resources that can be used
for both private and public clouds deployments. Hence, we have
used technologies like Terraform (for cloud infrastructure provi-
sioning, Modi, 2021), Helm (for deploying applications on
Kubernetes clusters, Shah and Dubaria, 2019), and Docker (for ap-
plication code packaging and shipment, Boettiger, 2015). SeQuiLa
has been successfully deployed to both popular managed Hadoop
services like Google Dataproc (utilized also in Krissaane et al.,
2020) and managed Kubernetes services like Google Kubernetes
Engine (GKE), Azure Kubernetes Service, or Amazon Elastic
Kubernetes Service. Figure 3 presents an exemplary setup on GKE
using the spark-on-k8s-operator and SeQuiLa application defined
as a Kubernetes Custom Resource Definition. This architecture
was suggested in Castro et al. (2019) as a preferred Apache Spark
deployment scenario for scaling data analytics workloads and ena-
bling efficient, on-demand utilization of resources in the cloud in-
frastructure. More detailed information on setup and
corresponding Terraform modules can be found in the dedicated
GitHub repository (https://github.com/biodatageeks/sequila-cloud-
recipes).

2.6 Features
Table 2 summarizes the features of the SeQuiLa package and com-
pares them with state-of-the-art software, including samtools and
GATK.

SeQuiLa-pileup operates on sorted aligned sequencing reads
both in BAM and CRAM format. The fast pileup algorithm requires
reads to have MD Tag attribute which can be determined during the
alignment process or calculated and added to BAM files independ-
ently after alignment is completed. MD tag is described in https://
samtools.github.io/hts-specs/SAMtags.pdf as a string encoding the
mismatched and deleted reference bases, used in conjunction with
the CIGAR and SEQ fields to reconstruct the bases of the reference
sequence interval to which the alignment has been mapped. This can
enable variant calling without requiring access to the entire original
reference. Input files can be read either from the local file system,
distributed file system or object storage using a custom data source
which allows representing input reads as relational data. The dataset
used for calculating the pileup can be restricted according to the

P1

ub2,lb3 ub3

A

B

C

C3=P3

D

E

ub1,lb2lb1

C1=P1+P2

C2=P2+P3

V3V2V1

P2 P3

Fig. 1. Reads-aware partitioning algorithm: original distributed partitions (A); read

assignment (color coded) to original partitions according to alignment starting pos-

ition (B); virtual partitions and their boundaries calculated by Algorithm 1 (C); coa-

lesced partitions (D); and read assignment (color coded) to coalesced partitions and

corresponding virtual partitions (E). Note that some of the reads will be processed

in more than one coalesced partition. This approach produces on average equally

sized virtual partitions (no data skewness) except for the first one and last one that

are a bit larger and smaller than the rest, respectively

SQL API

Dataframe/Dataset
API

Parser

Analyzer Logical Optimizer Planner

ResolveTableValuedFunctionsSeq

case CreateDataSourceTableAsSelectCommand => ...
case InsertIntoHadoopFsRelationCommand => ...

 case PileupTemplate => ...

Fig. 2. SeQuiLa extensions to Apache Spark Catalyst optimizer

4 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

148

user-provided parameters including reads bit flag and mapping
quality.

Samtools and GATK produce verbose output for every coordin-
ate. On the contrary, our software implements lossless block com-
pression of adjacent genomic positions which results in output an
order of magnitude smaller. SeQuiLa-pileup result includes the gen-
omic coordinates, reference bases, depth of coverage, the ratio of
reference to non-reference bases, alternative bases (strand-aware)
with occurrences counts and optionally the base qualities for the
positions where at least one non-reference base is present. The out-
put is stored in the popular big data-ready file formats such as ORC
or Parquet making it easy to run further analyses, e.g. in Apache
Spark or tools like Trino (Sethi et al., 2019).

The SeQuiLa package is also distributed as a Python module
(https://github.com/biodatageeks/pysequila) and can be used on
local resources or cloud infrastructure. It can be easily integrated
with widespread open-source notebook-based environments for
data analysis including Google Colab and Jupyter.

3 Results

3.1 Datasets
We have used publicly available Exome Sequencing (ES) and Whole
Genome Sequencing (WGS) datasets. We performed quality assur-
ance tests on both short reads (sample NA12878) and long reads
(guppy), represented in BAM and CRAM formats that were aligned
to human reference genome GRCh38 with MD tags included.

3.2 Investigated solutions
Table 2 summarizes the functionalities of tools included in our com-
parison. Among the solutions included in the benchmark, only
Spark-based GATK and SeQuiLa offer both multi-threaded and dis-
tributed versions of the depth coverage and pileup algorithms. For
ADAM and SeQuiLa we used Apache Spark 3.1.2 runtime, in the
case of GATK that does not provide support for Spark 3.x, we used
Apache Spark 2.4.3. Megadepth, mosdepth and samtools 1.14 are
multi-threaded applications but only the parts of their algorithms re-
sponsible for the IO operations (BZGF block compression/decom-
pression) are parallelized—the remaining stages of their algorithm
are sequential.

We have also included the previous version of SeQuiLa software
(0.6.11) to assess the improvement of our single-pass and cache-less
SeQuiLa-pileup-cov-only algorithm over the previously published
SeQuila-cov. Several tools require additional input, i.e. genomic
intervals in case of GATK’s coverage and PaCBAM’s (Valentini
et al., 2019) pileup or the list of genomic positions in case of aseq’s
(Romanel et al., 2015) pileup that restricts the processed data and
affects algorithm’s computational complexity therefore the afore-
mentioned solutions were not included in the final benchmark.

3.3 Testing environment
3.3.1 Single machine

Table 3 presents key information regarding the hardware and oper-
ating system configuration of the machine used for benchmark pur-
poses. No hardware or software virtualization was used.

3.3.2 Hadoop cluster

Hadoop cluster (HDP 3.1.4) consists of 6 master and 34 worker
nodes, 680 (1360 logical) cores, 700 TB of Hadoop File System
(HDFS) disks, 6.8 TB of RAM for Yet Another Resource Negotiator
(YARN) node pool and a 100 Gbits interconnect network. Master
node specification was the same as in the single-node benchmark, in
the case of workers the only difference was in disks configuration—

Table 3. Technical specification—single node.

Processor Base freq (GHz) CPUs Total cores (logical) Memory (GB) Operating system Disk

Intel(R) Xeon(R)

E5-2618L v4

2.20 2 20 (40) 256 RHEL 7.8 (Maipo) 3TB (RAID1)

Fig. 3. SeQuiLa deployment on GKE with spark-on-k8s-operator with Kubernetes

Custom Resource Definition, Prometheus for runtime metrics collection and

Grafana as observability platform

Table 2. Investigated solutions

Tool Coverage Pileup MQF SA MT DIST

samtools 1.9 (Li et al., 2009) þ þ þ þ – –

samtools 1.14 (Danecek et al., 2021) þ þ þ þ þ (I/O for coverage) –

GATK 4.2.3.0 (McKenna et al., 2010) þ (intervals) þ – – – –

GATK-Spark 4.2.3.0 þ (intervals) þ – – þ þ
ADAM 0.36.0 (Massie et al., 2013) þ – – – þ þ
megadepth 1.1.1 (Wilks et al., 2021) þ – – – þ (I/O) –

mosdepth 0.3.2 (Pedersen and Quinlan, 2018) þ – – – þ (I/O) –

sambamba 0.8.1 (Tarasov et al., 2015) þ – – – – –

SeQuiLa 0.6.11 (Wiewiórka et al., 2019) cov – – – þ þ
SeQuiLa 1.0.0 pileup-cov-only pileup 1 1 1 1

MQF, Mapping Quality Filter; SA, strand-awareness; MT, multi-threaded; DIST, distributed.

Cloud-native distributed genomic pileup operations 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

149

each node has additional 12 disks in Just a Bunch of Disks setup for
HDFS storage.

3.4 Performance testing scenarios and configuration
We have arranged four testing scenarios: (i) the pileup function per-
formance on the local machine and (ii) its scalability characteristics
on the Hadoop Cluster, (iii) the depth of coverage function perform-
ance on the local machine and (iv) its scalability on the Hadoop
Cluster. All tools from Table 2 were included in the presented bench-
marks. ES and WGS alignment datasets in the BAM format have been
used as inputs. In the case of tools (ADAM, GATK and SeQuiLa) run-
ning on top of Java Virtual Machine (JVM) we used three distribu-
tions of Java Development Kit (JDK)—for a single node, we used
GraalVM CE JDK8 for GATK (it does not support JDK11 yet) and
GraalVM CE JDK11 for ADAM and SeQuiLa for running tests on
the Hadoop cluster OpenJDK8 was used for all solutions. For tests
using disq library, an additional BAM index was created.

3.5 Results pileup
In the pileup benchmarks (Fig. 4), SeQuiLa-pileup proved to be the
fastest tool outperforming samtools in the single thread scenarios by
1:25x� 1:4x and GATK (both Spark, and non-Spark based) �3:9�
6:5x GATK (both Spark, and non-Spark based). In the case of
Hadoop cluster benchmarks SeQuiLa-pileup again proved to be
faster by �2:8� 5:3x than GATK that also required twice as much
memory (8 instead of 4GB) per Spark executor to be able to com-
plete the computations. It is worth noting that we were unable to
run GATK with 10 or fewer Spark executors (10 cores) facing errors
related to too many opened files (even after increasing Linux

nofile limit to more than 1 million that is more than the recom-
mended value for Hadoop clusters). We have verified that the algo-
rithm’s modularity is gainful when the user does not need to obtain
the full pileup summary statistics. In particular, if reporting of base
qualities is not required, SeQuiLa-pileup-no-qual that improves the
performance by �35% (compare SeQuiLa-pileup and SeQuiLa-
pileup-no-qual in Fig. 4A) can be used. The correctness of the algo-
rithm output was ensured by its rigorous comparison to the results
of Samtools mpileup (v 1.14).

3.5.1 Java virtual machine optimizations

For development and local testing purposes, we have chosen
GraalVM which uses an optimized compiler, generating high-
performance code, and therefore noticeably accelerates the execution
of the JVM-based applications (Sipek et al., 2020). Additionally, on
the source code level, we have applied inlining annotations for fre-
quently called concise methods which are further handled by the Scala
compiler, thus avoiding the overhead of method invocation. In our
diagnostic tests, we have confirmed that GraalVM choice results in
15% speedup while in-lining improved the timing by another 3%
(Fig. 5).

3.5.2 Input–output optimizations

When performing direct vectorized writes into ORC files we have
saved 18% of the computing time. We also take advantage of Intel’s
Genomics Kernel Library (GKL) providing high-performance opera-
tions of decompressing BAM file records. Our benchmarking con-
firms that the proper use of GKL’s methods results in a 12%
decrease of compute time (Fig. 5).

28
m

 0
s

28
m

 0
s

28
m

 0
s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

2h
 2

2m
 1

1s
2h

 2
2m

 1
1s

2h
 2

2m
 1

1s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

2h
 2

0m
 5

1s
2h

 2
0m

 5
1s

2h
 2

0m
 5

1s

1h
 2

8m
 1

2s
1h

 2
8m

 1
2s

1h
 2

8m
 1

2s

1h
 8

m
 1

7s
1h

 8
m

 1
7s

1h
 8

m
 1

7s

41
m

 5
0s

41
m

 5
0s

41
m

 5
0s

31
m

 5
5s

31
m

 5
5s

31
m

 5
5s

16
m

 4
3s

16
m

 4
3s

16
m

 4
3s

N
A

N
A

N
A

13
m

 4
9s

13
m

 4
9s

13
m

 4
9s

7m
 5

0s
7m

 5
0s

7m
 5

0s

5m
 1

9s
5m

 1
9s

5m
 1

9s

4m
 1

s
4m

 1
s

4m
 1

s

3m
 1

2s
3m

 1
2s

3m
 1

2s

1m
 5

7s
1m

 5
7s

1m
 5

7s

1m
 3

6s
1m

 3
6s

1m
 3

6s

21
m

 5
9s

21
m

 5
9s

21
m

 5
9s

11
m

 2
9s

11
m

 2
9s

11
m

 2
9s

7m
 5

3s
7m

 5
3s

7m
 5

3s

6m
 1

1s
6m

 1
1s

6m
 1

1s

5m
 1

0s
5m

 1
0s

5m
 1

0s

3m
 1

8s
3m

 1
8s

3m
 1

8s

2m
 3

3s
2m

 3
3s

2m
 3

3s

0

2500

5000

7500

10000

1 2 3 4 5 10 15

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

samtools 1.14
gatk 4.2.3.0 Pileup

gatk 4.2.3.0 PileupSpark
SeQuiLa−pileup−no−qual 1.0.0

SeQuiLa−pileup 1.0.0A

7h
 1

6m
 4

3s
7h

 1
6m

 4
3s

7h
 1

6m
 4

3s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

21
h

40
m

 4
8s

21
h

40
m

 4
8s

21
h

40
m

 4
8s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

19
h

37
m

 3
6s

19
h

37
m

 3
6s

19
h

37
m

 3
6s

12
h

29
m

 2
0s

12
h

29
m

 2
0s

12
h

29
m

 2
0s

8h
 8

s
8h

 8
s

8h
 8

s

5h
 2

2m
 2

9s
5h

 2
2m

 2
9s

5h
 2

2m
 2

9s

4h
 3

3m
 4

8s
4h

 3
3m

 4
8s

4h
 3

3m
 4

8s

2h
 9

m
 1

9s
2h

 9
m

 1
9s

2h
 9

m
 1

9s5h
 2

m
 4

1s
5h

 2
m

 4
1s

5h
 2

m
 4

1s

2h
 3

6m
 1

3s
2h

 3
6m

 1
3s

2h
 3

6m
 1

3s

1h
 4

5m
 4

0s
1h

 4
5m

 4
0s

1h
 4

5m
 4

0s

1h
 2

0m
 2

7s
1h

 2
0m

 2
7s

1h
 2

0m
 2

7s

1h
 5

m
 4

9s
1h

 5
m

 4
9s

1h
 5

m
 4

9s

38
m

 1
8s

38
m

 1
8s

38
m

 1
8s

0

25000

50000

75000

1 2 3 4 5 10

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

samtools 1.14 gatk 4.2.3.0 Pileup gatk 4.2.3.0 PileupSpark SeQuiLa−pileup 1.0.0B

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

11
m

 5
2s

11
m

 5
2s

11
m

 5
2s

8m
 4

5s
8m

 4
5s

8m
 4

5s

9m
 5

8s
9m

 5
8s

9m
 5

8s

12
m

 1
7s

12
m

 1
7s

12
m

 1
7s

43
m

 0
s

43
m

 0
s

43
m

 0
s

6m
 4

3s
6m

 4
3s

6m
 4

3s

4m
 1

5s
4m

 1
5s

4m
 1

5s

2m
 1

4s
2m

 1
4s

2m
 1

4s

1m
 4

s
1m

 4
s

1m
 4

s

53
s

53
s

53
s

46
s

46
s

46
s

0

1000

2000

3000

1 5 10 20 50 75 100

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

gatk 4.2.3.0 PileupSpark SeQuiLa−pileup 1.0.0C

N
A

N
A

N
A

1h
 9

m
 3

7s
1h

 9
m

 3
7s

1h
 9

m
 3

7s

47
m

 1
9s

47
m

 1
9s

47
m

 1
9s

38
m

 2
2s

38
m

 2
2s

38
m

 2
2s

31
m

 7
s

31
m

 7
s

31
m

 7
s

21
m

 5
2s

21
m

 5
2s

21
m

 5
2s

16
m

 4
3s

16
m

 4
3s

16
m

 4
3s

19
m

 3
9s

19
m

 3
9s

19
m

 3
9s

18
m

 1
6s

18
m

 1
6s

18
m

 1
6s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

35
m

 9
s

35
m

 9
s

35
m

 9
s

19
m

 2
7s

19
m

 2
7s

19
m

 2
7s

12
m

 1
8s

12
m

 1
8s

12
m

 1
8s

8m
 5

7s
8m

 5
7s

8m
 5

7s

8m
 2

5s
8m

 2
5s

8m
 2

5s

3m
 5

0s
3m

 5
0s

3m
 5

0s

3m
 2

4s
3m

 2
4s

3m
 2

4s

3m
 3

0s
3m

 3
0s

3m
 3

0s

2m
 4

0s
2m

 4
0s

2m
 4

0s

1m
 5

7s
1m

 5
7s

1m
 5

7s

1m
 5

0s
1m

 5
0s

1m
 5

0s

2m
 5

s
2m

 5
s

2m
 5

s

44
m

 5
5s

44
m

 5
5s

44
m

 5
5s

23
m

 5
4s

23
m

 5
4s

23
m

 5
4s

17
m

 2
5s

17
m

 2
5s

17
m

 2
5s

12
m

 4
8s

12
m

 4
8s

12
m

 4
8s

10
m

 2
9s

10
m

 2
9s

10
m

 2
9s

5m
 2

0s
5m

 2
0s

5m
 2

0s

4m
 4

5s
4m

 4
5s

4m
 4

5s

4m
 2

3s
4m

 2
3s

4m
 2

3s

3m
 2

5s
3m

 2
5s

3m
 2

5s

2m
 5

7s
2m

 5
7s

2m
 5

7s

2m
 4

4s
2m

 4
4s

2m
 4

4s

2m
 5

3s
2m

 5
3s

2m
 5

3s

0

1000

2000

3000

4000

5000

10 20 30 40 50 100 150 200 250 300 350 400

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

gatk 4.2.3.0 PileupSpark SeQuiLa−pileup−no−qual 1.0.0 SeQuiLa−pileup 1.0.0D

Fig. 4. Pileup summary function comparison. Tests were performed on a single node for ES (A), WGS (B), and on the Hadoop cluster for ES (C), WGS (D)

6 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

150

3.6 Results depth of coverage
In the case of both ES and WGS datasets (Fig. 6), megadepth
proved to be the fastest tool in a single-machine single thread setup
outperforming the second one, SeQuiLa-pileup-cov-only by 1.3–
1.6�. The gap between them decreases steadily with an increasing

number of threads. While processing ES and WGS data SeQuiLa-
pileup-cov-only becomes the fastest tool when 5 and 10 threads are
used, respectively. It is worth emphasizing that for the following
tools: megadepth, mosdepth, and samtools, we observed very simi-
lar performance characteristics—in contrast to SeQuiLa-pileup-
cov-only they do not scale up beyond 5–10 threads at all. These
results confirm the fact that these tools only implement the parallel
read and blocks decompression operations and the main part of
their algorithms does not take advantage of multiple cores. For
ADAM, we only measured the single-threaded performance that
proved to be substantially worse than the remainder of the best
performing tools (�40x). Last but not least, we confirmed that the
current version of the coverage calculations algorithm imple-
mented in SeQuiLa 1.0.0 package (SeQuiLa-pileup-cov-only) is ap-
proximately 2� faster than our previous version of the coverage
algorithm (SeQuiLa-cov) described in (Wiewiórka et al., 2019)
[compare SeQuiLa-pileup-cov-only (1.0.0) and SeQuiLa-cov
(0.6.11) on Fig. 6A].

In the case of WGS on the Hadoop cluster (Fig. 6), we bench-
marked tools allocating from 10 to 200 cores. SeQuiLa-pileup-cov-
only outperformed ADAM on average by more than an order of
magnitude (11� 16x). We used the same memory (8GB—driver,
4GB executor) and Central Processing Unit configurations (1 core)
for both Spark processes to ensure comparability of the results be-
tween solutions. Also Spark dynamic allocation mechanism has
been explicitly disabled. In the case of ADAM tests, we observed
random fails of Spark tasks (or even the whole stages) due to net-
work timeouts.

12 %

18 %

12 %

3 %

31 %

0

10

20

30

Optimization

%
 o

f t
he

 b
as

el
in

e
tim

e
(a

ll
of

f)
 d

ec
re

as
ed

 w
he

n
op

tim
iz

at
io

n
is

 o
n

All on Direct Path Insert/Vectorized Write on Graalvm on (OpenJDK fallback) Intel GKL on Inline on

Fig. 5. Impact of various optimizations techniques on overall performance (percent-

age of time reduction) as compared with baseline (all optimizations off) for pileup

computation. First bar shows the performance gain when all optimizations are on

8m
 5

0s
8m

 5
0s

8m
 5

0s

6m
 5

9s
6m

 5
9s

6m
 5

9s

2m
 5

3s
2m

 5
3s

2m
 5

3s

2m
 2

5s
2m

 2
5s

2m
 2

5s

1m
 5

4s
1m

 5
4s

1m
 5

4s

1m
 5

6s
1m

 5
6s

1m
 5

6s

15
m

 5
1s

15
m

 5
1s

15
m

 5
1s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

8m
 3

2s
8m

 3
2s

8m
 3

2s

8m
 0

s
8m

 0
s

8m
 0

s

3m
 3

5s
3m

 3
5s

3m
 3

5s

3m
 2

s
3m

 2
s

3m
 2

s

2m
 9

s
2m

 9
s

2m
 9

s

2m
 9

s
2m

 9
s

2m
 9

s

4m
 1

3s
4m

 1
3s

4m
 1

3s

3m
 2

s
3m

 2
s

3m
 2

s

1m
 3

3s
1m

 3
3s

1m
 3

3s

1m
 3

2s
1m

 3
2s

1m
 3

2s

1m
 3

2s
1m

 3
2s

1m
 3

2s

1m
 3

3s
1m

 3
3s

1m
 3

3s

36
m

 9
s

36
m

 9
s

36
m

 9
s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

>5
h

>5
h

>5
h

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

13
m

 4
1s

13
m

 4
1s

13
m

 4
1s

7m
 5

4s
7m

 5
4s

7m
 5

4s

4m
 2

6s
4m

 2
6s

4m
 2

6s

3m
 3

7s
3m

 3
7s

3m
 3

7s

2m
 1

2s
2m

 1
2s

2m
 1

2s

1m
 4

3s
1m

 4
3s

1m
 4

3s

6m
 4

2s
6m

 4
2s

6m
 4

2s

3m
 3

8s
3m

 3
8s

3m
 3

8s

1m
 5

1s
1m

 5
1s

1m
 5

1s

1m
 2

9s
1m

 2
9s

1m
 2

9s

58
s

58
s

58
s

43
s

43
s

43
s

0

1000

2000

3000

1 2 4 5 10 15

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

samtools 1.14
samtools 1.9

mosdepth 0.3.2
megadepth 1.1.1

sambamba−0.8.1
adam 0.36.0

SeQuiLa−cov 0.6.11(old−algorithm)
SeQuiLa−pileup−cov−only 1.0.0

A

2h
 1

2m
 5

5s
2h

 1
2m

 5
5s

2h
 1

2m
 5

5s

1h
 4

5m
 1

6s
1h

 4
5m

 1
6s

1h
 4

5m
 1

6s

36
m

 5
5s

36
m

 5
5s

36
m

 5
5s

28
m

 3
1s

28
m

 3
1s

28
m

 3
1s

19
m

 4
0s

19
m

 4
0s

19
m

 4
0s

19
m

 2
6s

19
m

 2
6s

19
m

 2
6s

2h
 2

2m
 2

0s
2h

 2
2m

 2
0s

2h
 2

2m
 2

0s

2h
 3

m
 0

s
2h

 3
m

 0
s

2h
 3

m
 0

s

53
m

 1
s

53
m

 1
s

53
m

 1
s

44
m

 4
5s

44
m

 4
5s

44
m

 4
5s

30
m

 7
s

30
m

 7
s

30
m

 7
s

28
m

 4
1s

28
m

 4
1s

28
m

 4
1s

1h
 3

1m
 2

s
1h

 3
1m

 2
s

1h
 3

1m
 2

s

49
m

 1
8s

49
m

 1
8s

49
m

 1
8s

21
m

 9
s

21
m

 9
s

21
m

 9
s

18
m

 1
4s

18
m

 1
4s

18
m

 1
4s

17
m

 4
3s

17
m

 4
3s

17
m

 4
3s

17
m

 3
7s

17
m

 3
7s

17
m

 3
7s

4h
 5

8m
 3

9s
4h

 5
8m

 3
9s

4h
 5

8m
 3

9s

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

1h
 5

8m
 5

9s
1h

 5
8m

 5
9s

1h
 5

8m
 5

9s

1h
 1

m
 2

7s
1h

 1
m

 2
7s

1h
 1

m
 2

7s

31
m

 4
6s

31
m

 4
6s

31
m

 4
6s

26
m

 3
6s

26
m

 3
6s

26
m

 3
6s

13
m

 4
s

13
m

 4
s

13
m

 4
s

10
m

 3
9s

10
m

 3
9s

10
m

 3
9s

0

5000

10000

15000

20000

1 2 4 5 10 15

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

samtools 1.14 mosdepth 0.3.2 megadepth 1.1.1 sambamba−0.8.1 SeQuiLa−pileup−cov−only 1.0.0B

1h
 1

6m
 4

4s
1h

 1
6m

 4
4s

1h
 1

6m
 4

4s

34
m

 2
9s

34
m

 2
9s

34
m

 2
9s

26
m

 4
3s

26
m

 4
3s

26
m

 4
3s

10
m

 2
1s

10
m

 2
1s

10
m

 2
1s

10
m

 4
4s

10
m

 4
4s

10
m

 4
4s

8m
 1

5s
8m

 1
5s

8m
 1

5s

4m
 7

s
4m

 7
s

4m
 7

s

1m
 3

5s
1m

 3
5s

1m
 3

5s

1m
 5

s
1m

 5
s

1m
 5

s

57
s

57
s

57
s

32
s

32
s

32
s

34
s

34
s

34
s

0

2000

4000

5 10 20 50 75 100

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

adam 0.36.0 SeQuiLa−pileup−cov−only 1.0.0C

5h
 4

7m
 3

3s
5h

 4
7m

 3
3s

5h
 4

7m
 3

3s

2h
 4

0m
 2

0s
2h

 4
0m

 2
0s

2h
 4

0m
 2

0s

1h
 4

9m
 4

7s
1h

 4
9m

 4
7s

1h
 4

9m
 4

7s

1h
 3

8m
 2

s
1h

 3
8m

 2
s

1h
 3

8m
 2

s

1h
 1

2m
 2

3s
1h

 1
2m

 2
3s

1h
 1

2m
 2

3s

38
m

 8
s

38
m

 8
s

38
m

 8
s

24
m

 4
s

24
m

 4
s

24
m

 4
s

21
m

 5
0s

21
m

 5
0s

21
m

 5
0s

N
A

N
A

N
A

N
A

N
A

N
A

22
m

 3
3s

22
m

 3
3s

22
m

 3
3s

9m
 4

5s
9m

 4
5s

9m
 4

5s

8m
 3

5s
8m

 3
5s

8m
 3

5s

6m
 5

4s
6m

 5
4s

6m
 5

4s

5m
 9

s
5m

 9
s

5m
 9

s

2m
 5

4s
2m

 5
4s

2m
 5

4s

2m
 8

s
2m

 8
s

2m
 8

s

1m
 5

0s
1m

 5
0s

1m
 5

0s

2m
 1

3s
2m

 1
3s

2m
 1

3s

1m
 4

3s
1m

 4
3s

1m
 4

3s

0

5000

10000

15000

20000

25000

10 20 30 40 50 100 150 200 250 300

Number of CPU cores

E
xe

cu
tio

n
tim

e
[s

]

adam 0.36.0 SeQuiLa−pileup−cov−only 1.0.0D

Fig. 6. Depth of coverage function comparison. Tests were performed on a single node for ES (A), WGS (B), and on the Hadoop cluster for ES (C), WGS (D). SeQuiLa-pileup

designates the execution time of the full pileup calculations; SeQuiLa-pileup-no-qual indicates the execution time of the simplified pileup calculations in which base qualities

are not computed

Cloud-native distributed genomic pileup operations 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

151

Discussion

Our pileup method is designed for compatibility with modern dis-
tributed computing systems originating from the Hadoop ecosystem
mostly implemented using JVM languages such as Java or Scala.
This approach incurs additional overheads and causes inefficiencies
in the single-node deployments that justify why it does not signifi-
cantly outperform samtools (a tool written in C language compiling
to the native code) in a single thread comparisons. Our pileup algo-
rithm performs especially well on the alignment files with the high-
quality short reads when MD tags contain a relatively low number
of mismatch/deleted bases. Calculating the complete pileup summa-
ries from the long reads with a large number of mismatches is more
challenging for our approach and requires additional modifications
that we plan to introduce in its future versions. This limitation does
not apply to calculations of the depth of coverage. It also favors
BAM over CRAM alignment file formats (data not shown). This is
because both the alignment file index scans (random access) as well
the sequential reads are much slower (�3� 4x) in the case of
CRAM when compared to BAM file format (our results confirm the
findings presented in Supplementary Material) (Bonfield et al.,
2019). Finally, saving results in the distributed processing can be
substantially reduced with adding support for direct, vectorized
writes (currently available in the local mode) that is on our project
roadmap as well.

Since the complexity of the cloud-native distributed computing
systems have been acknowledged in many studies, including
Vaillancourt et al. (2020), we have also prepared ready-to-use cloud
deployment examples that can help users to start using SeQuiLa in
public cloud environments.

4 Conclusions

We present a new module that extends and optimizes our SeQuiLa
Apache Spark library. This component introduces a new algorithm
for fast, scalable, and fully distributed computation of pileup sum-
mary from the alignment files (BAM, CRAM). Our solution com-
bines a distributed computing engine based on the extended Apache
Spark Catalyst query optimizer with the SQL interface for handling
large-scale processing and analyzing next-generation sequencing
datasets in a consistent tabular form. This approach will help to fa-
cilitate the adoption of scalable solutions among users that are nei-
ther proficient in distributed computing nor in cloud infrastructures
as envisioned in Lawlor and Sleator (2020).

Funding

This work was supported by the (POB Cybersecurity and data analysis) of

Warsaw University of Technology within the Excellence Initiative: Research

University (IDUB) program. Grant’s Principal Investigator: A.S.. The funding

body did not play any role in the design of the study, the collection, analysis

and interpretation of data or in writing of the article. Publication costs are

funded by Warsaw University of Technology.

Conflict of Interest: none declared.

Data availability

The datasets supporting the results of this article are available upon
request in Google Cloud Storage bucket: gs://biodatageeks/sequila/
data/ (for downloading using Google Cloud Storage compatible tool
like gsutil) or https://www.googleapis.com/storage/v1/b/biodatageeks/
o?prefix=sequila/data/. Project source code is publicly available
(Apache License) at the GitHub platform at https://github.com/bioda
tageeks/sequila. Cloud deployments documentation and recipes are
publicly available at the GitHub platform at https://github.com/bioda
tageeks/sequila-cloud-recipes. Detailed documentation is available on
the project site at https://biodatageeks.github.io/sequila/.

References

Ahmad,T. et al. (2021) VC@scale: scalable and high-performance variant call-

ing on cluster environments. GigaScience, 10.

Armbrust,M. et al. (2015) Spark SQL. In: Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data. ACM, New

York, NY, USA, pp. 1383–1394.

Boettiger,C. (2015) An introduction to Docker for reproducible research.

SIGOPS Oper. Syst. Rev., 49, 71–79.

Bonfield,J.K. et al. (2019) Crumble: reference free lossy compression of

sequence quality values. Bioinformatics, 35, 337–339.

Capuccini,M. et al. (2020) MaRe: processing big data with application

containers on apache spark. GigaScience, 9.

Castro,D. et al. (2019) Apache spark usage and deployment models for scien-

tific computing. EPJ Web Conf., 214, 07020.

Danecek,P. et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience, 10.

Guerriero,M. et al. (2019) Adoption, support, and challenges of

infrastructure-as-code: insights from industry. In: 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Cleveland,

OH, USA. IEEE, pp. 580–589.

Guo,R. et al. (2018) Bioinformatics applications on apache spark.

GigaScience, 7, 1–10.

Heller,J. (2019) Modify data with advanced DML. In: Pro Oracle SQL

Development. Apress, Berkeley, CA, pp. 191–218.

Ivanov,T. and Pergolesi,M. (2020) The impact of columnar file formats on

SQL-on-hadoop engine performance: a study on ORC and parquet.

Concurr. Comput. Pract. Exper., 32.

Koboldt,D.C. et al. (2012) VarScan 2: somatic mutation and copy number alter-

ation discovery in cancer by exome sequencing. Genome Res., 22, 568–576.

Koppad,S. et al. (2021) Cloud computing enabled big multi-omics data ana-

lytics. Bioinform. Biol. Insights, 15, 11779322211035921.

Krissaane,I. et al. (2020) Scalability and cost-effectiveness analysis of whole

genome-wide association studies on Google Cloud platform and Amazon

Web Services. J. Am. Med. Inform. Assoc., 27, 1425–1430.

Lawlor,B. and Sleator,R.D. (2020) The democratization of bioinformatics: a

software engineering perspective. GigaScience, 9, 1–3.

Li,H. (2011) A statistical framework for SNP calling, mutation discovery, as-

sociation mapping and population genetical parameter estimation from

sequencing data. Bioinformatics, 27, 2987–2993.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The se-

quence alignment/map format and SAMtools. Bioinformatics, 25,

2078–2079.

Liu,Y. et al. (2021) Psi-Caller: a lightweight short read-based variant caller

with high speed and accuracy. Front. Cell Dev. Biol., 9, 731424.

Luo,R. et al. (2020) Exploring the limit of using a deep neural network on

pileup data for germline variant calling. Nat. Mach. Intell., 2, 220–227.

Massie,M. et al. (2013). Adam: genomics formats and processing patterns for

cloud scale computing. Technical Report, EECS Department, University of

California, Berkeley.

McKenna,A. et al. (2010) The genome analysis toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.,

20, 1297–1303.

Modi,R. (2021) Deep-dive into terraform. In: Deep-Dive Terraform on Azure.

Apress, Berkeley, CA, pp. 77–113.

Niemenmaa,M. et al. (2012) Hadoop-BAM: directly manipulating next gener-

ation sequencing data in the cloud. Bioinformatics, 28, 876–877.

Nisbet,A. et al. (2019). Profiling and tracing support for Java applications. In:

Proceedings of the 2019 ACM/SPEC International Conference on

Performance Engineering. ACM, New York, NY, USA, pp. 119–126.

Pedersen,B.S. and Quinlan,A.R. (2018) Mosdepth: quick coverage calculation

for genomes and exomes. Bioinformatics, 34, 867–868.

Romanel,A. et al. (2015) ASEQ: fast allele-specific studies from

next-generation sequencing data. BMC Med. Genomics, 8, 9.

Sater,V. et al. (2020) UMI-gen: A UMI-based read simulator for variant calling

evaluation in paired-end sequencing NGS libraries. Comput. Struct.

Biotechnol. J., 18, 2270–2280.

Sethi,R. et al. (2019) Presto: SQL on everything. In: 2019 IEEE 35th International

Conference on Data Engineering (ICDE), Macao, China. IEEE, pp. 1802–1813.

Shah,J. and Dubaria,D. (2019) Building modern clouds: using Docker,

Kubernetes & Google Cloud Platform. In: 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference (CCWC), Las

Vegas, NV, USA. IEEE, pp. 0184–0189.

Shen,Y. et al. (2021) Using vectorized execution to improve SQL query per-

formance on spark. In: 50th International Conference on Parallel

Processing. ACM, New York, NY, USA, pp. 1–11.

8 M.Wiewiórka et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

152

Sipek,M. et al. (2020) Enhancing performance of cloud-based software appli-

cations with GraalVM and Quarkus. In: 2020 43rd International

Convention on Information, Communication and Electronic Technology

(MIPRO), Opatija, Croatia. IEEE, pp. 1746–1751.

Smith,J. et al. (2021) Scalable analysis of multi-modal biomedical data.

GigaScience, 10.

Sun,X. et al.; CAAPA consortium. (2018) Optimized distributed systems

achieve significant performance improvement on sorted merging of massive

VCF files. GigaScience, 7.

Tarasov,A. et al. (2015) Sambamba: fast processing of NGS alignment for-

mats. Bioinformatics, 31, 2032–2034.

Vaillancourt,P. et al. (2020). Reproducible and portable workflows for

scientific computing and HPC in the cloud. In: Practice and Experience

in Advanced Research Computing. ACM, New York, NY, USA, pp. 311–320.

Valentini,S. et al. (2019) PaCBAM: fast and scalable processing of whole

exome and targeted sequencing data. BMC Genomics, 20, 1–5.

Wiewiórka,M. et al. (2018) SeQuiLa: an elastic, fast and scalable

SQL-oriented solution for processing and querying genomic intervals.

Bioinformatics, 35, 2156–2158.

Wiewiórka,M. et al. (2019) SeQuiLa-cov: a fast and scalable library for depth

of coverage calculations. GigaScience, 8.

Wiewiórka,M.S. et al. (2017) Benchmarking distributed data warehouse solu-

tions for storing genomic variant information. Database, 2017.

Wilks,C. et al. (2021) Megadepth: efficient coverage quantification for

BigWigs and BAMs. Bioinformatics, 37, 3014–3016.

Yuan,D.Y. and Wildish,T. (2020). Bioinformatics application with

Kubeflow for Batch Processing in Clouds. In: Bioinformatics Application

with Kubeflow for Batch Processing in Clouds. Springer, Cham, pp.

355–367.

Zaharia,M. et al. (2010) Spark: cluster computing with working sets. In:

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud

Computing, Boston, MA, USA, Vol. 10, p10.

Cloud-native distributed genomic pileup operations 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac804/6900922 by guest on 01 January 2023

153

154

CHAPTER 7

Co-Authors’ statements

• [P1] M.S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti, P. Gawrysiak, and

M.J. Okoniewski. SparkSeq: Fast, scalable and cloud-ready tool for the interactive

genomic data analysis with nucleotide precision. Bioinformatics, 30(18), 2014, Page:

157

• [P2] M.S. Wiewiórka, D.P. Wysakowicz, M.J. Okoniewski, and T. Gambin. Bench-

marking distributed data warehouse solutions for storing genomic variant information.

Database : the journal of biological databases and curation, 2017, Page: 161

• [P3] Anastasiia Hryhorzhevska, Marek Wiewiórka, Michał Okoniewski, and Tomasz

Gambin. Scalable Framework for the Analysis of Population Structure Using the Next

Generation Sequencing Data. In Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 10352 LNAI, pages 471–480. 2017, Page: 164

• [P4] Marek Wiewiórka, Anna Leśniewska, Agnieszka Szmurło, Kacper Stępień, Ma-

teusz Borowiak, Michał Okoniewski, and Tomasz Gambin. SeQuiLa: an elastic, fast

and scalable SQL-oriented solution for processing and querying genomic intervals.

Bioinformatics, 35(12):2156–2158, June 2019, Page: 167

• [P5] Marek Wiewiórka, Agnieszka Szmurło, Wiktor Kuśmirek, and Tomasz Gambin.

155

SeQuiLa-cov: A fast and scalable library for depth of coverage calculations. Giga-

Science, 8(8), August 2019, Page: 171

• [P6] Marek Wiewiórka, Agnieszka Szmurło, Paweł Stankiewicz, and Tomasz Gambin.

Cloud-native distributed genomic pileup operations. Bioinformatics, December 2022,

Page: 174

156

157

Zürich, December 18th 2022

To Whom It May Concern:

This letter is to certify my contribution to the following publication of which I was co-author:

1) Wiewiórka, M. S., Messina, A., Pacholewska, A., Maffioletti, S., Gawrysiak, P., & Okoniewski,

M. J. (2014). SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data analysis
with nucleotide precision. Bioinformatics, 30(18), 2652-2653.

My input included help in formulating the infrastructure requirements on the on-premise

ScienceCloud infrastructure, supervise the provisioning and the tuning of the underlying virtualized

resources.

Sincerely,

Dr. Sergio Maffioletti

ID Scientific IT Services

OCT G 35

Binzmühlestrasse 130

8092 Zürich

158

159

160

161

162

Warszawa, 03.03.2023
dr hab. inż. Tomasz Gambin, prof. uczelni
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M. S., Wysakowicz, D. P., Okoniewski, M. J., & Gambin, T. (2017).
Benchmarking distributed data warehouse solutions for storing genomic variant
information. Database, Volume 2017, 2017, bax049.

Mój wkład polegał na sformułowaniu problemu, nadzorowaniu projektu oraz
współudziale w przygotowaniu manuskryptu.

Tomasz Gambin

163

164

165

Warszawa, 03.03.2023
dr hab. inż. Tomasz Gambin, prof. uczelni
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Hryhorzhevska, A., Wiewiórka, M., Okoniewski, M., & Gambin, T. (2017, June).
Scalable framework for the analysis of population structure using the next generation
sequencing data. In International Symposium on Methodologies for Intelligent Systems
(pp. 471-480). Springer, Cham.

Moim wkładem było sformułowanie funkcjonalności skalowalnego narzędzia do obliczeń
z zakresu genetyki populacyjnej umożliwiającego automatyczną kalibrację parametrów.
Nadzorowałem implementację i ewaluację zaproponowanego rozwiązania.
Uczestniczyłem w pisaniu manuskryptu oraz ostatecznej wersji artykułu.

Tomasz Gambin

166

Warszawa, 03.03.2023
mgr inż. Agnieszka Szmurło
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Leśniewska, A., Szmurło, A., Stępień, K., Borowiak, M., Okoniewski, M., &
Gambin, T. (2019). SeQuiLa: an elastic, fast and scalable SQL-oriented solution for processing
and querying genomic intervals. Bioinformatics, 35(12), 2156-2158.

Mój wkład polegał na częściowej implementacji algorytmu, realizacji testów jakościowych,
opracowaniu figur oraz przygotowaniu tekstu manuskryptu.

Agnieszka Szmurło

167

Warszawa, 03.03.2023
dr hab. inż. Tomasz Gambin
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Leśniewska, A., Szmurło, A., Stępień, K., Borowiak, M., Okoniewski,
M., & Gambin, T. (2019). SeQuiLa: an elastic, fast and scalable SQL-oriented solution
for processing and querying genomic intervals. Bioinformatics, 35(12), 2156-2158.

Moim wkładem był współudział w sformułowaniu funkcjonalności narzędzia oraz
wskazanie potencjalnych zastosowań. Uczestniczyłem również w przygotowaniu i
interpretacji wyników testów oraz przygotowaniu części manuskryptu.

Tomasz Gambin

168

169

170

171

Warszawa, 03.03.2023
mgr inż. Agnieszka Szmurło
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Szmurło, A., Kuśmirek, W., & Gambin, T. (2019). SeQuiLa-cov: a fast and
scalable library for depth of coverage calculations. Gigascience, 8(8), giz094.

Mój wkład polegał na częściowej implementacji algorytmu, współudziale w przygotowaniu
koncepcji optymalizacji i analize formalnej rozwiązania oraz realizacji testów jakościowych,
opracowaniu figur i przygotowaniu tekstu manuskryptu.

Agnieszka Szmurło

172

Warszawa, 03.03.2023
dr hab. inż. Tomasz Gambin, prof. uczelni
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Szmurło, A., Kuśmirek, W., & Gambin, T. (2019). SeQuiLa-cov: a fast
and scalable library for depth of coverage calculations. Gigascience, 8(8), giz094.

Moim wkładem był współudział w sformułowaniu funkcjonalności narzędzia oraz
wskazanie potencjalnych zastosowań. Uczestniczyłem również w przygotowaniu i
interpretacji wyników testów oraz przygotowaniu części manuskryptu.

Tomasz Gambin

173

Warszawa, 03.03.2023
mgr inż. Agnieszka Szmurło
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Szmurło, A., Stankiewicz, P., & Gambin, T. (2022). Cloud-native
distributed genomic pileup operations. Bioinformatics (Oxford, England), btac804.
Advance online publication. https://doi.org/10.1093/bioinformatics/btac804

Mój wkład polegał na częściowej implementacji algorytmu, współudziale w przygotowaniu
koncepcji optymalizacji i analize formalnej rozwiązania oraz realizacji testów jakościowych,
opracowaniu figur i przygotowaniu tekstu manuskryptu.

Agnieszka Szmurło

174

Houston, 12.01.2023

prof. dr hab. n. med. Paweł Stankiewicz

Department of Molecular and Human Genetics,

Baylor College of Medicine,

Houston, TX 77030, USA

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Szmurło, A., Stankiewicz, P., & Gambin, T. (2022). Cloud-native

distributed genomic pileup operations. Bioinformatics (Oxford, England), btac804.

Advance online publication. https://doi.org/10.1093/bioinformatics/btac804

 Mój wkład polegał na współudziale w przygotowaniu tekstu manuskryptu

Z poważaniem,

Paweł Stankiewicz

175

Warszawa, 03.03.2023
dr hab. inż. Tomasz Gambin, prof. uczelni
Instytut Informatyki,
Politechnika Warszawska

OŚWIADCZENIE

Niniejsze oświadczenie dotyczy mojego wkładu w publikacji:

1. Wiewiórka, M., Szmurło, A., Stankiewicz, P., & Gambin, T. (2022). Cloud-native
distributed genomic pileup operations. Bioinformatics (Oxford, England), btac804.
Advance online publication. https://doi.org/10.1093/bioinformatics/btac804

Moim wkładem był współudział w sformułowaniu funkcjonalności narzędzia oraz
wskazanie potencjalnych zastosowań. Uczestniczyłem również w przygotowaniu i
interpretacji wyników testów oraz przygotowaniu części manuskryptu.

Tomasz Gambin

176

	Introduction
	From MapReduce to Cloud Computing and Data Lakehouse era
	HTS sequencing overview
	Primary analysis
	Secondary analysis
	Tertiary analysis

	Applications of Big Data techniques to HTS data analysis
	Challenges leading to Genomic Data Lakehouse
	Aim and Research Theses
	Publications constituting this Dissertation

	Main scientific contribution of the Author of the Dissertation
	Genomic data distributed processing in data lakes wiewiorkaSparkSeqFastScalable2014
	Genomic data querying in distributed data warehouses wiewiorkaBenchmarkingDistributedData2017
	Genomic Data Lakehouse
	Distributed machine learning framework for genomic datahryhorzhevskaScalableFrameworkAnalysis2017
	Scalable range joinswiewiorka2019a
	Scalable depth of coverage and pileup calculationswiewiorka2019, wiewiorkaCloudnativeDistributedGenomic2022

	Scientific achievements
	Source code repositories
	Own research grants
	Participation in research grants
	Other research publications
	Book chapters
	Conference talks
	Conference posters
	Prizes and awards

	Conclusions and future work
	Bibliography
	Copies of the publications constituting the Dissertation
	SparkSeq: Fast, scalable and cloud-ready tool for the interactive genomic data analysis with nucleotide precision wiewiorkaSparkSeqFastScalable2014
	Benchmarking distributed data warehouse solutions for storing genomic variant information wiewiorkaBenchmarkingDistributedData2017
	Scalable Framework for the Analysis of Population Structure Using the Next Generation Sequencing Data hryhorzhevskaScalableFrameworkAnalysis2017
	SeQuiLa: an elastic, fast and scalable SQL-oriented solution for processing and querying genomic intervals wiewiorka2019a
	SeQuiLa-cov: A fast and scalable library for depth of coverage calculations wiewiorka2019
	Cloud-native distributed genomic pileup operations wiewiorkaCloudnativeDistributedGenomic2022

	Co-Authors' statements

