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Background
Deep phenotyping refers to the comprehen-
sive and detailed analysis of phenotypic traits
in organisms to understand complex biological
processes and diseases. Human Phenotype
Ontology (HPO) that is one of the most pop-
ular ontologies for computational phenotype
analysis currently contains over 18,000 terms
and over 156,000 annotations to hereditary dis-
eases. Over the years a number of automatic
methods has been developed, such as rule-based
and machine learning, including recent evalu-
ations of Large Language Models (LLMs)
applicability ([7, 1] ). PhenoAgent is, to the
best of our knowledge, the first LLM-based tool
for an automatic HPO terms tagging that re-
lies on Retrieval Augmented Generation
(RAG)[3] and Mixture-of-Agents (MoA)[6]
concepts.

Methods
Our solution implements deep phenotyping pro-
cess using DSPy framework combined with
Sentence Transformers library for HPO em-
beddings model fine-tuning and LanceDB for
hybrid search of HPO terms in RAG compo-
nent. LLMs are exposed using OpenAI proto-
col (for quantized models with 8-14B param-
eters using Ollama, Llama3.1 70B and 405B
in the Azure Cloud). NeuML/pubmedbert-
base-embeddings was fine-tuned using Mul-
tipleNegativesRankingLoss loss function.
PhenoAgent’s user interface and application
programaming interface are implemented with
Gradio library. PhenoAgent can be deployed
locally, on-premise and in the cloud environ-
ments.
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Deep phenotyping process

Mixture-of-Agents (MoA) voting strategy
Let k be the minimum number of models required for an element to be included in the final output,
M be the number of models, Si be the set of predicted elements from the i-th model where Si ⊆ U
and U is the universal set of all possible elements.

f(x) =
M∑
i=1

1(x ∈ Si)

SMoA-M-k = {x ∈ U | f(x) ≥ k}

(1)

where 1(x ∈ Si) is an indicator function that is 1 if x is in Si, and 0 otherwise.
PhenoAgent-MoA-M-k is the identifier of the strategy presented in the results section.

PhenoAgent architecture

Results
Tool Model Precision Recall F1

PhenoGPT[7] Llama2-7B 0.3136 0.2805 0.2961
PhenoTagger[5] BioBert 0.7992 0.6971 0.7447
FastHPOCR[2] - 0.6503 0.7303 0.6880

PhenoAgent-MoA-8-2 MoA-8a 0.4974 0.6990 0.5812
PhenoAgent-MoA-8-3 MoA-8 0.6275 0.6241 0.6258
PhenoAgent-Llama-70 LLama3.1-70B 0.5549 0.5549 0.5401
PhenoAgent-Llama-405 LLama3.1-405B 0.6248 0.5616 0.5915

Performance comparison of different tools using a 10% subset of BiolarkGSC+[4] dataset. Bold to
indicate the highest values, colors for LLM-based solutions comparison.

aMoA architecture using 8 LLMs:, 8 and/or 4-bit quantization: Llama3.1-8B(4,8), Gemma2:9B(4,8), Phi3:14b(4),
Hermes3:8B(4,8). Mistrsal:7B(4).

Discussion
1. PhenoAgent is a prototype project that already achieves comparable results with other

state-of-the-art tools on the GSC+ corpus (i.e. PhenoTagger or FastHPOCR) without any
LLM fine-tuning.

2. It proves superiority of RAG architectures for HPO concept normalization (i.e.when com-
pared to PhenoGPT) and help to avoid HPO ID hallucinations([7]).

3. It shows that the MoA architecture of relative small LLMs can improve inference performance
and outperform state-of-the-art models, e.g. LLama-3.1-405B.

4. Further work on a hybrid (dictionary + LL) solution for addressing lower than expected
inference performance, e.g. using DSPy optimizers.

5. Polish language support is on the project roadmap.


