PhenoAgent-Agent-based architecture for high-throughput deep phenotyping with Large Language Models

Marek Wiewiórka¹, Wojciech Sitek¹, Rafał Małanij, Tomasz Gambin¹ ¹ Institute of Computer Science, Warsaw University of Technology, marek.wiewiorka@pw.edu.pl

Background

Deep phenotyping refers to the comprehensive and detailed analysis of phenotypic traits in organisms to understand complex biological processes and diseases. Human Phenotype **Ontology** (HPO) that is one of the most popular ontologies for computational phenotype analysis currently contains over 18,000 terms and over 156,000 annotations to hereditary diseases. Over the years a number of automatic methods has been developed, such as rule-based and machine learning, including recent evaluations of Large Language Models (LLMs) applicability ([7, 1]). **PhenoAgent** is, to the best of our knowledge, the first LLM-based tool for an automatic HPO terms tagging that relies on Retrieval Augmented Generation (RAG)[3] and Mixture-of-Agents (MoA)[6]concepts.

Deep phenotyping process

Clinical note 1750770 Two very <u>preterm infants</u> (born at 29 and 25 weeks, respectively) were found to have <u>abnormal ribs</u> . Though this was thought unimportant at the time, it was subsequently shown to indicate that some members of their families had a dominantly inherited risk of developing <u>skin cancer</u> and other serious problems.		Phenotype ter candidates detection	Two very prete 25 weeks, resp have <u>abnormal</u> unimportant at shown to indicat their families ha of developing <u>sk</u> serious problem	Clinical note 1750770 Two very <u>preterm infants</u> (born at 29 and 25 weeks, respectively) were found to have <u>abnormal ribs</u> . Though this was thought unimportant at the time, it was subsequently shown to indicate that some members of their families had a dominantly inherited risk of developing <u>skin cancer</u> and other serious problems.	
HPO IDS abnormal rib morpholog		y abn	HPO terms Iormal rib morphology	Phenotypes abnormal ribs	Term

Methods

Our solution implements deep phenotyping process using **DSPy** framework combined with Sentence Transformers library for HPO embeddings model fine-tuning and LanceDB for hybrid search of HPO terms in RAG component. LLMs are exposed using **OpenAI** protocol (for quantized models with 8-14B parameters using Ollama, Llama3.1 70B and 405B in the Azure Cloud). NeuML/pubmedbertbase-embeddings was fine-tuned using MultipleNegativesRankingLoss loss function. PhenoAgent's user interface and application programming interface are implemented with Gradio library. PhenoAgent can be deployed locally, on-premise and in the cloud environments.

Mixture-of-Agents (MoA) voting strategy

Let k be the minimum number of models required for an element to be included in the final output, M be the number of models, S_i be the set of predicted elements from the *i*-th model where $S_i \subseteq \mathcal{U}$ and \mathcal{U} is the universal set of all possible elements.

 $f(x) = \sum_{i=1}^{M} \mathbf{1}(x \in S_i)$ $S_{\text{MoA-M-k}} = \{x \in \mathcal{U} \mid f(x) \ge k\}$

(1)

where $\mathbf{1}(x \in S_i)$ is an indicator function that is 1 if x is in S_i , and 0 otherwise. *PhenoAgent-MoA-M-k* is the identifier of the strategy presented in the results section.

PhenoAgent architecture

References

- [1] T. Groza, H. Caufield, D. Gration, G. Baynam, M. A. Haendel, P. N. Robinson, C. J. Mungall, and J. T. Reese. An evaluation of GPT models for phenotype concept recognition. *BMC Medical Informatics and Decision Making*, 24(1):30, Jan. 2024.
- [2] T. Groza, D. Gration, G. Baynam, and P. N. Robinson. FastHPOCR: pragmatic, fast, and accurate concept recognition using the human phenotype ontology. *Bioinformatics*, 40(7):btae406, July 2024.
- [3] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems, volume 33, pages 9459– 9474. Curran Associates, Inc., 2020.
- [4] M. Lobo, A. Lamurias, and F. M. Couto. Identifying Human Phenotype Terms by Combining Machine Learning and Validation Rules. *BioMed Research International*, 2017:1–8, 2017.

Results

	Tool	Model	Precision	Recall	F1	
	PhenoGPT[7]	Llama2-7B	0.3136	0.2805	0.2961	
	PhenoTagger[5]	BioBert	0.7992	0.6971	0.7447	
	FastHPOCR[2]	_	0.6503	0.7303	0.6880	
	PhenoAgent-MoA-8-2	MoA-8 ^a	0.4974	0.6990	0.5812	
	PhenoAgent-MoA-8-3	MoA-8	0.6275	0.6241	0.6258	
	PhenoAgent-Llama-70	LLama3.1-70B	0.5549	0.5549	0.5401	
	PhenoAgent-Llama-405	LLama3.1-405B	0.6248	0.5616	0.5915	
Performan	ce comparison of different	tools using a 10%	subset of Bic	olarkGSC+	-[4] dataset	t. Bold

indicate the highest values, colors for LLM-based solutions comparison.

- [5] L. Luo, S. Yan, P.-T. Lai, D. Veltri, A. Oler, S. Xirasagar, R. Ghosh, M. Similuk, P. N. Robinson, and Z. Lu. PhenoTagger: a hybrid method for phenotype concept recognition using human phenotype ontology. *Bioinformatics*, 37(13):1884–1890, July 2021.
- [6] J. Wang, J. Wang, B. Athiwaratkun, C. Zhang, and J. Zou. Mixture-of-Agents Enhances Large Language Model Capabilities, June 2024.
- [7] J. Yang, C. Liu, W. Deng, D. Wu, C. Weng, Y. Zhou, and K. Wang. Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT. *Patterns*, 5(1):100887, Jan. 2024.

 a MoA architecture using 8 LLMs:, 8 and/or 4-bit quantization: Llama3.1-8B(4,8), Gemma2:9B(4,8), Phi3:14b(4), Hermes3:8B(4,8). Mistrsal:7B(4).

Discussion

- 1. **PhenoAgent** is a prototype project that already achieves comparable results with other **state-of-the-art** tools on the GSC+ corpus (i.e. PhenoTagger or FastHPOCR) without **any LLM fine-tuning**.
- 2. It proves superiority of **RAG** architectures for HPO concept normalization (i.e.when compared to PhenoGPT) and help to avoid HPO ID hallucinations([7]).
- 3. It shows that the **MoA** architecture of relative small LLMs can improve inference performance and outperform state-of-the-art models, e.g. **LLama-3.1-405B**.
- 4. Further work on a hybrid (dictionary + LL) solution for addressing lower than expected inference performance, e.g. using DSPy **optimizers**.
- 5. **Polish** language support is on the project roadmap.