

Agenda disclaimer

● Not a comprehensive overview of Large

Language Model Operations (LLMOps)

● Not (primarily) about tools or platforms

● Not about ready-to-implement processes

● …but about (a few) concepts that may

help to drive success of GenAI projects

● 2 different use cases for inspiration

A starting point…
model neutrality

structured output

Demo Production-grade systemLLMOps framework!

?

MLOps => LLMOps

● Translating ML models into reliable, cost-efficient systems and
managing their lifecycle

● MLOps and LLMOps have the same goals and principles but differ in
focus

LLMOps challenges in the enterprise context

● LLMs churn - new, more capable models are released frequently
● Multi model strategies - optimizing for cost, latency, quality
● LLM specialization - one size does not fit all
● On-premise vs managed deployments
● Output of LLM is by nature non-deterministic
● Security and data protection
● … there is not such a thing as LLM

backward compatibility out of the box

Complexity requires automation

● Prompt optimization
● Controlling LLM Output
● LLM testing and evaluation
● Costs optimization

Genkina, Dina. "Don't Start a Career as an AI Prompt Engineer AI will Take
Your Job." IEEE Spectrum 61.5 (2024): 30-34.

Prompt engineering process
● Similar prompts => different

output
● Best prompt specific to a model
● Both instructions and examples

(in-context learning) can have
great impact on output

● An error-prone and tedious
process

Automated!

Demo

Prompt engineering => optimization task

● Different optimizing strategies for
both selecting/bootstrapping
examples, instructions or
models/programs Ensemble

● Metric can be an arbitrary function
even LLM-based (LLM-as-a-judge)

● Can be a student-teacher model
setup

Khattab, Omar, et al. "Dspy: Compiling declarative language
model calls into self-improving pipelines." arXiv preprint
arXiv:2310.03714 (2023).

Opsahl-Ong, Krista, et al. "Optimizing Instructions and
Demonstrations for Multi-Stage Language Model Programs."
arXiv preprint arXiv:2406.11695 (2024).

Zhang, Tuo, Jinyue Yuan, and Salman Avestimehr.
"Revisiting OPRO: The Limitations of Small-Scale
LLMs as Optimizers." arXiv preprint arXiv:2405.10276
(2024).

Automated strategies for controlling LLM outputs

● Assertions - general purpose
mechanism for guardrailing
LLM output

● Typed Predictions - specialized
for enforcing specific schema
using Pydantic models for LLM
output

● Both can be used in the prompt
optimization process

Singhvi, Arnav, et al. "DSPy Assertions: Computational
Constraints for Self-Refining Language Model
Pipelines." arXiv preprint arXiv:2312.13382 (2023).

LLM Evaluation

● Absolutely crucial when building a reliable LLM-system
● Depending on the problem can be statistical (e.g. precision, recall, F1)

or model-based (LLM-as-a-judge) in more generic cases
● Problem of aligning LLM evaluation with human preferences

○ G-Eval, Prometheus and Evalgen
● Human annotated LLM outputs for calibration
● LLM-assisted criteria and assertion generation

Shankar, Shreya, et al. "Who Validates the Validators? Aligning
LLM-Assisted Evaluation of LLM Outputs with Human
Preferences." arXiv preprint arXiv:2404.12272 (2024).

Complexity requires observability

● Open-source tools such as LangFuse, Phoenix and LangSmith
emerge, putting high emphasis on LLM observability, including:

○ program metrics, e.g. latency, tokens, costs
○ evaluations scores (optimization process)
○ traces
○ user feedback (annotations)

● user feedback => new datasets

Costs optimization

● Different strategies (from most to least complex)
○ hardware optimization
○ LLM optimization (e.g. quantization, scaling down parameters, fine-tuning)
○ LLM routing
○ LLM ensemble optimization, collective wisdom - Mixture-of-Agents
○ prompt optimization

● … but in order to try to do it you need to have:
○ portable LLM pipelines
○ evaluation datasets and metric functions
○ observability platform

Ong, Isaac, et al. "Routellm: Learning to route llms with
preference data." arXiv preprint arXiv:2406.18665 (2024).

Wang, Junlin, et al. "Mixture-of-Agents Enhances
Large Language Model Capabilities." arXiv preprint
arXiv:2406.04692 (2024).

Demo scenario

https://github.com/mwiewior/llmops-webinar

https://github.com/mwiewior/llmops-webinar

Scenario: SMS Phishing Detection System

● demo with GPT4-o successful…but your boss have 3 concerns:

○ costs
○ latency
○ security

Demo first!

Idea: Let’s productionize it with a much smaller open-source LLM
that can be hosted locally.

SMS+prompt

Scenario: SMS PHISHING - the LLMOps way!

● prepare a train-eval-test dataset

● define your metric functions

● make the output structured

● optimize-evaluate-observe loop

● version the LLM-program

● use GitOps for deployment

Notebook time!

What you've learned today

● use LLM for a classification problem
● compare SLMs vs SOTA GPT-4o
● show how to use DSPy for automatic prompt

optimization, structured output and Langfuse for
observability

● analyze the evaluation results
● optimize costs and boost LLM performance with

model fine-tuning and automatic prompt
optimization

GetInData | Part of Xebia

Experts in Data, Cloud,
Analytics and ML/AI,
 and GenAI solutions

Experience in: media,
e-commerce, retail,
fintech, banking & telco

Solution Areas

LLMOps/MLOps
Platforms

Stream Processing &
Real-time Analytics

Data, AI & Cloud
Engineering

Selected CustomersSelected technologies

Data Platforms
Modernization &
Migration

Encore

PhenoAgent - use case
● Deep phenotyping refers to the comprehensive and detailed analysis of

phenotypic traits in organisms
● Two-step procedure involving:

○ concept recognition (finding phenotypic information in the unstructured text) and
○ concept normalization (mapping recognized concepts to the standardized Human

Phenotype Ontology (HPO) identifiers)

PhenoAgent - architecture

PhenoAgent - first LLM-based tool for an automatic HPO terms
annotation powered by RAG and small LLMs ensemble architecture

PhenoAgent - deep dive

PhenoAgent - results and conclusions

● Optimized ensemble of LLM programs of small (and quantized) LLMs can
easily outperform SOTA models (i.e. Llama-3.1-405/70B)

● RAG architecture can outperform fine-tuned models of comparable size
● Using concepts like Assertions and automated prompt optimization help to

deliver portable LLM-pipelines
● Using model ensemble and prompt optimization can reduce costs of

infrastructure

