
Od dema do produkcyjnych 
systemów GenAI, czyli o LLMOps

Marek Wiewiórka
GetInData | part of Xebia





GetInData | Part of Xebia

Experts in Data, Cloud, 
Analytics and ML/AI,
and GenAI solutions

Experience in: media, e-
commerce, retail, fintech, 
banking & telco

Solution Areas

LLMOps/MLOps 

Platforms
Stream Processing & 

Real-time Analytics

Data, AI & Cloud 

Engineering

Selected CustomersSelected technologies

Data Platforms 

Modernization & 
Migration



Agenda disclaimer

● Not a comprehensive overview of Large 

Language Model Operations (LLMOps)

● Not (primarily) about tools or platforms

● Not about ready-to-implement 

processes

● …but about (a few) concepts that may 

help to drive success of GenAI projects

● 2 different use cases for inspiration



A starting point…
model neutrality

structured output

Demo Production-grade systemLLMOps framework!

?



MLOps => LLMOps

● Translating ML models into reliable systems and managing their 
lifecycle

● MLOps and LLMOps have the same goals and principles but differ in 
focus



LLMOps challenges in the enterprise context

● LLMs churn - new, more capable models are released frequently
● Multi model strategies - optimizing for cost, latency, quality
● LLM specialization - one size does not fit all
● On-premise vs managed deployments
● Output of LLM is by nature non-deterministic
● Security and data protection
● … there is not such a thing as LLM backward compatibility out of the 

box



Complexity requires automation

● Prompt optimization
● Controlling LLM Output
● LLM testing and evaluation
● Costs optimization

Genkina, Dina. "Don't Start a Career as an AI Prompt Engineer AI will Take 

Your Job." IEEE Spectrum 61.5 (2024): 30-34.



Prompt engineering process
● Similar prompts => different

output
● Best prompt specific to a model
● Both instructions and examples 

(in-context learning) can have 
great impact on output

● An error-prone and tedious
process



Prompt engineering => optimization task

● Different optimizing strategies for 
both selecting/bootstrapping 
examples, instructions or 
models/programs Ensemble

● Metric can be an arbitrary function 
even LLM-based (LLM-as-a-judge)

● Can be a student-teacher model 
setup

Khattab, Omar, et al. "Dspy: Compiling declarative language 

model calls into self-improving pipelines." arXiv preprint 

arXiv:2310.03714 (2023).

Opsahl-Ong, Krista, et al. "Optimizing Instructions and 

Demonstrations for Multi-Stage Language Model Programs." 

arXiv preprint arXiv:2406.11695 (2024).

Zhang, Tuo, Jinyue Yuan, and Salman Avestimehr. 

"Revisiting OPRO: The Limitations of Small-Scale 

LLMs as Optimizers." arXiv preprint arXiv:2405.10276

(2024).



Automated strategies for controlling LLM outputs

● Assertions - general purpose 
mechanism for guardrailing 
LLM output

● Typed Predictions - specialized 
for enforcing specific schema 
using Pydantic models for LLM 
output

● Both can be used in the 
prompt optimization process

Singhvi, Arnav, et al. "DSPy Assertions: Computational 

Constraints for Self-Refining Language Model Pipelines." 

arXiv preprint arXiv:2312.13382 (2023).



LLM Evaluation 

● Absolutely crucial when building a reliable LLM-system
● Depending on the problem can be statistical (e.g. precision, recall, 

F1) or model-based (LLM-as-a-judge) in more generic cases
● Problem of aligning LLM evaluation with human preferences

○ G-Eval, Prometheus and Evalgen

● Human annotated LLM outputs for calibration
● LLM-assisted criteria and assertion generation

Shankar, Shreya, et al. "Who Validates the Validators? Aligning 

LLM-Assisted Evaluation of LLM Outputs with Human 

Preferences." arXiv preprint arXiv:2404.12272 (2024).



Complexity requires observability

● Open-source tools such as LangFuse, Phoenix and LangSmith 
emerge, putting high emphasis on LLM observability, including:
○ program metrics, e.g. latency, tokens, costs
○ evaluations scores (optimization process)
○ traces
○ user feedback (annotations)

● user feedback => new datasets



Costs optimization

● Different strategies (from most to least complex)
○ hardware optimization
○ LLM optimization (e.g. quantization, scaling down parameters, fine-tuning )
○ LLM routing
○ LLM ensemble optimization, collective wisdom - Mixture-of-Agents
○ prompt optimization

● … but in order to try to do it you need to have:
○ portable LLM pipelines
○ evaluation datasets and metric functions
○ observability platform

Ong, Isaac, et al. "Routellm: Learning to route llms with 

preference data." arXiv preprint arXiv:2406.18665 (2024).

Wang, Junlin, et al. "Mixture-of-Agents Enhances 

Large Language Model Capabilities." arXiv preprint 

arXiv:2406.04692 (2024).



PhenoAgent - use case

● Deep phenotyping refers to the comprehensive and detailed analysis of 
phenotypic traits in organisms

● Two-step procedure involving: 
○ concept recognition (finding phenotypic information in the unstructured text) and 
○ concept normalization (mapping recognized concepts to the standardized Human 

Phenotype Ontology (HPO) identifiers)



PhenoAgent - architecture

PhenoAgent  - first LLM-based tool for an automatic HPO terms 
annotation powered by RAG and small LLMs ensemble architecture



PhenoAgent - deep dive



PhenoAgent - results and conclusions

● Optimized ensemble of LLM programs of small (and quantized) LLMs can 
easily outperform SOTA models (i.e. Llama-3.1-405/70B)

● RAG architecture can outperform fine-tuned models of comparable size
● Using concepts like Assertions and automated prompt optimization help to 

deliver portable LLM-pipelines
● Using model ensemble and prompt optimization can reduce costs of 

infrastructure




	Slide 1: Od dema do produkcyjnych systemów GenAI, czyli o LLMOps
	Slide 2
	Slide 3: GetInData | Part of Xebia
	Slide 4: Agenda disclaimer 
	Slide 5: A starting point…
	Slide 6: MLOps => LLMOps
	Slide 7: LLMOps challenges in the enterprise context
	Slide 8: Complexity requires automation
	Slide 9: Prompt engineering process
	Slide 10: Prompt engineering => optimization task 
	Slide 11: Automated strategies for controlling LLM outputs
	Slide 12: LLM Evaluation 
	Slide 13: Complexity requires observability
	Slide 14: Costs optimization
	Slide 15: PhenoAgent - use case
	Slide 16: PhenoAgent - architecture 
	Slide 17: PhenoAgent - deep dive 
	Slide 18: PhenoAgent - results and conclusions 
	Slide 19

