polars-bio: High-Performance Python
DataFrame Operations for Genomics

How to build composable data management systems at scale?

Marek Wiewidrka
December 05, 2025

About me

P Assistant Professor® at Warsaw University of Technology

» Chief Architect @Xebia Data Poland, 20+ years building
data-intensive systems

P distributed and data-intensive systems, artificial
intelligence and cloud computing for large scale genomic
studies.

» road and gravel bikes enthusiast

» https://marekwiewiorka.org/

9Institute of Computer Science

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://www.ii.pw.edu.pl/ii_en
https://marekwiewiorka.org/

Biodatageeks lab

» Warsaw University of Technology,
Faculty of Electronics and Meet the Team
Information Technology

Principal Investigators

» . current research topics:
» Al for analyzing biomedical a &
literature - —
» Meta-calling for gene fusion
detection in RNA-Seq Researchers

» Optimizing RVAS
» Open genomic data lakehouse Q g ‘% @A @
https://biodatageeks.org/

Anna Kosycarz \ga Ostrowska Wujc\ech Sitek Piotr Suszynsk\ Agmeszka Szmurio

v

» https://github.com/biodatageeks/

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/
https://github.com/biodatageeks/

Agenda

1. % Rationale and motivation for building a domain-specific data management
system

. ¥ Composable Data Management System principles

2
3. & Deep dive into internals
4. ;] Benchmarks

5

. @ conclusions

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Introduction to polars-bio

» polars-bio is a novel Python DataFrame library for genomics

that is fast and memory-efficient, introduced in 2025, built on ()
top of Polars, Apache DataFusion and Apache Arrow.
» main focus areas: =
» ¥ genomic interval operations POLARS-BIO

» 4 scalable data processing and querying
» Y fast 1/0 for bioinformatics file formats
> cloud storage interoperability
» E# genomic data lakehouse readiness

[T

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/polars-bio/
https://pola.rs/
https://datafusion.apache.org/
https://arrow.apache.org/

- Rationale, History, and Challenges

» ./ Growing bioinfo dataset sizes vs. increasing capacity of commodity
hardware

»]! Trade-off: scalability of distributed systems (e.g., Apache Spark - Hail,
Glow) vs. simplicity and performance of single-node libraries (e.g. DuckDB)

» M Single-node solutions: constrained in both performance and scalability
» 4 First attempt (2019-2023): SeQuilLa project on top of Apache Spark
» [Conclusion: towards a hybrid approach SeQuilaDistributed analytcs for genornieat

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/sequila/

Landscape of tools for genomic interval operations in Python

» several widely used libraries exist in this space:

» Pyranges and new Pyrangesl
» Pybedtools

» Bioframe

» GenomicRanges

Star History

puranges/pyranges
B puranges/puranges_Lx

» employing an eager, in-memory execution model
with Pandas DataFrames/ NumPy arrays

GitHub Stars

» sweep-line (Bioframe, Pyrangesl) or Nested
Containment List (Pyranges, GenomicRanges) or
genome binning algorithm (Pybetools)

Dec 04, 2025

= biodatageeks/polars-bio: 108

100

» focus primarily on optimizing genomic operations
rather than end-to-end processing and 10
operations

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/pyranges/pyranges_1.x
https://github.com/daler/pybedtools
https://github.com/open2c/bioframe
https://github.com/BiocPy/GenomicRanges

- Limitations of Current Approaches to Genomic Interval Processing

Genomic intervals processing is closer to BI/DWH/ETL-style workloads than to
numerical computing!

» Relying on libraries (e.g., NumPy) not designed for efficient bioinformatics
data handling

» Re-implementing algorithms and reinventing the wheel instead of leveraging
mature query engine: optimizers, operators and open data standards

» Parallelism and out-of-core not treated as a first-class concern (limited
scalability)

» Naive Python implementations (slow, limited scalability)
» Missing end-to-end optimization including reading, processing and writing data

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Market trends in data systems

vvywvyy

v

v . . —
out-of-core (streaming) processing I|I!II| Il'!":ll-
il I I

iyl

single node vectorized engines — e.g. DuckDB, Polars " L

lazy evaluation and query optimization — e.g. Polars
open data standards and interoperability,

such as Apache Arrow or Apache Iceberg Q
composability and reusability, e.g. query parsers,
optimizers, query engines, memory and file/table formats DuckDB

data lakehouse architecture

polars-bio: High-Performance Python DataFrame Operations for Genomics

- The Composable Data Management Systems (CDMS) Manifesto

» Problem: Data systems are fragmented, duplicated, hard to maintain

P Vision: Break monoliths into modular, reusable components (frontends, Internal
Representation, optimizers, execution engines, runtime environments)

» Why Now: Already existing open standards (Arrow, Parquet, Iceberg)) or
implementations (Apache DataFusion, Velox, Apache Spark) to enable
composability

» Benefits: Faster innovation, reduced engineering effort, consistent user
experience

Source: Sourc:https://www.vldb.org/pvldb/vol16/p2679-pedreira.pdf

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://www.vldb.org/pvldb/vol16/p2679-pedreira.pdf

- From Monoliths to Modular Data Stack

Decoupling at different levels (top-down):

1. Storage vs. Compute vs. Metadata (Data Platform Level)
2. Language Frontend vs. Query Processing (Frontend Level)

3. Query Processing vs. Query Execution Runtime (Engine Level: local/parallel,
distributed, hybrid)

4. Original Execution (typically JVM or Python) vs. Native (Rust/C+ +) High
Performance (Runtime Level)

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Why polars-bio is different? Composability first!

» Composable and best of breed approach

» query engine (Apache DataFusion) L2

» DataFrame library (Polars)

» columnar memory format (Apache Arrow) POLARS-BIO
>

| 2

data structure for interval intersection queries (COITrees and Superintervals)
bioinformatics file formats (noodles)
» storage access (OpenDAL)

» Builtin lazy, out-of-core and parallel computational model

» 10 layer optimizations for analytical queries, such as projection and predicate
pushdowns

polars-bio: High-Performance Python DataFrame Operations for Genomics

polars-bio high-level architecture

! Data sources Execution * Data sinks

Async streams.
seon e [0
77777 ¥ Flez | ———> l

le formats readers It — tati
e providers nternal data representation
Cloud storage Local storage
A

Storage systems |
I
I
I

Table 1 Query planner

Stream i
Arow extensions

— > | Recond

|
|
1
) : Balches :
| Optimizer |
w o ep— iogtn |1
I
|
|
|
1

I] Datairame 3
Zero-copy I
Dataframe 2| Zero-~ Teblo 2
Cloud storage Local storage Batch/Stream or temp Parquet Arrow Amaw
> > | Amow _riemp Farauet o | Amow | Baten/Stream | Record
Record Record User-defined [*| Batches
| RAM Batches Batches table functions

@ python
o " L
. pandas @ pyion €I AtAFuSION @ust o BTN g jipandos ([P

rmance Pyt DataFrame Operations for Gen

Architecture deep-dive - core components

Table providers

SQL pre-processing views

Results materialization

Input files < Range operations
P . (per format) . (optional) . ge op .
: Data stream : Data straam - Data stream -
Local disk Registeritable GFF
Read/Scan DataFrame Write/Sink

Pushdown optimizations

Pushdovin optimizations

-

AWS S3 Registeriiable
ite/Sink
- 1o e @ e —onm s
j -0 7‘ A A
Local disk i |
Registertable | |
o | e s w—
|
: | | 4 I
Registertable
9 | Scan | | I o cov
G-~ Greate view | | | =
— | Scan | 0 Plugin— DataFrame
| | LazyFrame
| | | |
FTT T ‘r____L____\ it N | | |
1 import polars bio as pb A | | |
l
| Phregister v [[N . ———— -

‘gs://sourcedall.chrgz’,

query="SELEGT hvom, stert, end. spit parttvep, 1.3 |
7S impact FROM gnomad_big WHERE

el 1)=0 ANE
¢, MODERATE

v
"

of_over=pb.overiap(|1df
“gromad_sv’,

11" Jocal
||"v_gnomad")

|
. cnt-pb.count_overiaps(
bed", A

polars-bio: High-Performance Python DataFrame Operations for Genomics

| |
! df oversink csvigs:/target/overiap.csv) !
I I

- Architecture deep-dive - Polars and Apache DataFusion primer

» Polars and Apache DataFusion exhibit significant similarities, such as Apache
Arrow columnar memory model, lazy evaluation and out-of-core
computational model, great performance

» different main focuses:) APACHE y
» Polars - feature-rich end-user DataFrame library ~ DATAFUSION
» DataFusion — extremely extensible query engine I|I'|IIIIIIII=
for building custom data systems Illnlllll Il ||I|-
» do we really need both? |=: II=|. 'I".

» Polars’ great data wrangling capabilities but hard to extend

» DataFusion’s codebase reusability (e.g. hybrid execution)
and more robust abstractions for query and IO optimizations

» additional integration complexity (e.g. pushdown optimizations, parallelism
control)

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/pola-rs/polars
https://datafusion.apache.org/

- Architecture deep-dive - Apache Arrow

» Standardized columnar Pandas 2.0 Polars DuckDB
memory format — zero-copy
sharing

» Vectorized execution: SIMD
and CPU cache efficiency

» Cross-language Apache Arrow (Columnar, SIMD, Zero-Copy)
interoperability (e.g. Python

and Rust)

» Integration with open
standards — Parquet, Iceberg

» Foundation for modern data
systems — Polars, Ray,
Rapids, Apache Spark

[Apache DataFusion] [Apache Spark] Velox

polars-bio: High-Performance Python DataFrame Operations for Genomics

Architecture deep-dive - Polars vs. Pandas

Eager (Pandas / Polars eager)

» Execution model: Pandas is eager-only; Polars ((pataFrame |—>‘op_1: flter }—>{ op.2: groupby |—> [Result]
supports eager and lazy. execte now materialize

» Optimization: Pandas has no query optimizer;
Polars (lazy) performs projection/predicate

pushdown, simplification, reordering. , - logical: filter |- logical: groupby }—> —

i . i - optimized physical plan
4 Para}lllehsm. Pandlas n}ostlyl S.mﬁle t(lilrzaded Laay (Potars azy) otimizes ushoun, simpliy. rorcer primized physical p
(Python/GIL); Polars is multi-threaded (Rust). Pandas (object dype)
» Memory/layout: Pandas uses NumPy blocks;
Polars is columnar and Arrow-friendly.
» Out-of-core/streaming: Pandas primarily

in-memory; Polars supports
streaming/out-of-core in lazy plans.

P String handling: Pandas often stores Python

objects (high memory overheads); Polars stores
UTF-8 natively with efficient kernels (SIMD).

Arrow/Polars (UTF-8 + offsets)

DataFrame Operations for Genomics

Architecture deep-dive - Polars 10 plugin

» arbitrary function that returns a

generator (Iterator) producing DataFusion DataFusion
TableProvider TableProvider
pl.DataFrame batches and gets back
LazyFrame oimsmims (] onmasens
Logical Plan
» used for both files scanning and ‘OTL
interval operations results streaming —— Polars
. . PyDataFrame 10 Plugin
» zero-copy and streaming using a ‘

Arrow RecordBatchStream with
DataFusion PyDataFrame

I T Limit pushdown

Projection pushdown

/ Expression A\ Predicate pushdown

» support for limit, projection and \ “rensistor /
predicate pushdowns (currently only e
GFF)

polars-bio: High-Performance Python DataFrame Operations for Genomics

Benchmarking dataset

Dataset# Name Size(x1000) Description
0 chainRn4 2,351 Source
1 fBrain 199 Source
2 exons 439 Dataset used in the BEDTools tutorial.

» AlLIst real dataset converted] chanomsnat isw sowce

into Parquet format — details z chanverscz 760

» GFF3 GENCODE release 49 ’ cramentink SR s
6 chainMonDomS5Link 128,187 Source
7 ex-anno 1194 Dataset contains GenCode annotations with ~1.2

million lines, mixing all types of features

8 extna 9,945 Dataset contains ~10 million direct-RNA mappings.

Source: Jianglin Feng , Aakrosh Ratan , Nathan C Sheffield, Augmented Interval List:
a novel data structure for efficient genomic interval search, Bioinformatics 2019.

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://biodatageeks.org/polars-bio/supplement/#real-dataset
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_49/gencode.v49.annotation.gff3.gz

File formats: GFF (scan_csv vs polars-bio) — results 1/2

Scan witn Fiter Operation

» in full-scans Polars
and polars-bio
significantly
outperform Pandas

» Polars problem with

»»»»» : scan_csv and

compressed files)

» streaming
decompression
plugin

polars-bio: High-Performance Python DataFrame Operations for Genomics

File formats: GFF (scan_csv vs polars-bio) — results 2/2

» polars-bio achieves
near-linear scaling
up to 8 threads

» Polars and
streaming
decompression

scale poorly

polars-bio: High-Performance Python DataFrame Operations for Genomics

Architecture deep-dive — genomic interval operations 1/2

» inspired by the Hash Join
implementation in DataFusion

Interval operation

» the entire (coordinates) build T
side is read into the interval ;
search data structure

Record Batches

» batches from the probe side are
streamed through and checked
against the contents of the
search data structure

polars-bio: High-Performance Python DataFrame Operations for Genomics

- Architecture deep-dive — genomic interval operations 2/2

subproject sequila-native

v

» custom PhysicalPlanner and PhysicalOptimizerRule for detecting and rewriting
generic interval join operation (overlap or nearest)

» User-Defined Table Function (UDTF) for operations, such as coverage or count
overlaps
» several data structures available:
» COITrees
» IITree
» AVL-tree
» rust-lapper
» Superintervals

polars-bio: High-Performance Python DataFrame Operations for Genomics

https://github.com/biodatageeks/sequila-native
https://github.com/dcjones/coitrees
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/array_backed_interval_tree.rs
https://github.com/rust-bio/rust-bio/blob/master/src/data_structures/interval_tree/avl_interval_tree.rs
https://github.com/sstadick/rust-lapper
https://github.com/kcleal/superintervals/

Genomic interval operations — structures comparison results 1/5

» COITrees
(polars-bio default) [
and Superintervals L
fastest in all test
cases

» configurable in
runtime i

» more tests using
different datasets
characteristics
needed

polars-bio: High-Performance Python DataFrame Operations for Genomics

Genomic interval operations — results 2/5

Genomics Library Performance Analysis
Grouped by Operation (8-7 dataset)

Wall Time Comparison

Speedup Comparison

Mean Wall Time (seconds)

polars-bio: High-Performance Python DataFrame Operations for Genomics

Genomic interval operations — results 3/5

Speedup Comparison Across All Operations

Performance Comparison Across All Operations Overlap - Speedup Comparison
(Lower is Better) 25 2250 - polars_bio
Overlap - Small Dotasets. Overlap - Medium Dotasets Overlap - Large Dotasets o - pyrangest
o o s

Mean Time (seconds)
g g

Mean Time (seconds)
g

7 7
Dataset Pairs

Dataset pairs. Dataset Pairs Dataset Pairs Nearest - Speedup Comparison
Neaes - ot Daasets: Neaest - edum Dotsets: Newres - org Dntasets
g i H
£ £e oy 4
f—— [P—— ——
Couns Overaps - Small tasts Couns Overaps - e Datasets Coun Overtape.-targe Onasets Count Overlaps - specdup Comparison
Eo Eoz

g

7 7
Dataset pairs

taFrame Operations for Ge

Speedup vs 1-thread baseline

IS

w

Genomic interval operations — scaling — results 4/5

Parallel Scaling Performance (8-7 dataset)
Speedup relative to 1-thread baseline

Overlap Nearest Count Overlaps
polars-bio
~#@- GenomicRanges s s
Ideal speedup
o o
£ <
E] 3
54 84
3 3
3 3
H H
4 14
%3 %3
2 2
a a
. 3 3
/ 32 32
/ 3 8
/ a a
/ & &
/ - 1 L4 y
12x 1 1 1 1
10x
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 H 6 7 8

Number of Threads

mance Pyt

Number of Threads

Number of Threads

DataFrame Operations for Ge

Time (seconds)

Mean Wall Time

E2E Overlap

k C

ison (8-7

Genomic interval operations — e2e pipeline — results 5/5

m=m Pyrangesl

== Pyranges0

s Bioframe

mm= GenomicRanges

taFrame Operations for Ge

vs polars_bio_streaming Peak Memory Usage
37015 o To0x
347.45 095 S6068
08
® @
= o
g. 0.6 ;
3)
g $
& oa =
0.2
0.3«
0.07x 209 0.06x
0.0+
© N o e o> o
S & & & & S & & & &
5 & & & & & 3 & & & & &
¢ & < < ® & & & < ® &
> S > oy
& & & S
N Nd
& ¢
Libraries Libraries Libraries
polars-bio W polars-bio-streaming

polars-bio research paper

OXFORD

FORD soumnas eeo
Bioinformatics

Issues Advancearticles Submit v Alerts About v

Bioinformatics. v < Al Discovery
Rssistant
Article Contents JOURNAUARTICLE] ACCEPTED NANUSCRIPT
. . cmmons views AwETRIC
abstact polars-bio—fast, scalable and out-of-core operations
on large genomic interval datasets 3
Supplementary data >
Marek Wiewidrka, Pavel Khamutou, Marek Zbysiriski, Tomasz Gambin &

btaf640, https://doi.org/10. @ voremeticsinfomaton
Published: 01 December 2025 Article history v

[~ PDF NN SplitView ¢ Cite Permissions «2 Share v

Email alerts
Abstract Newjournal issues
Motivation New journal articles

Activity related to thisartcle
relationships ‘which are typicall

Sign up for marketing,
this context the Python programming language is extensively used for

tored in a tabular form of
called a DataFrame. Pandas is the most widely used Python DataFrame package
- e ity s N Recommended
and has been criticized for inefficiencies and scalability issues, which its modern
toaddress in the Rust

The Pfam proteln famills database: embracing
AL

https://doi.org/10.1093/bioinformatics/btaf640

programming language.

rmance Pyt DataFrame Operations for Ge

https://doi.org/10.1093/bioinformatics/btaf640

-

» ¥ polars-bio: a new Python DataFrame library for genomics built upon
CDMS principles

» +/ Combines Polars, Apache DataFusion, and Apache Arrow for speed and
scalability

» [Efficient I/0 for popular bioinformatics formats

»]l Addresses limitations of existing interval processing tools

» 7L Towards a hybrid, lakehouse-ready approach for large-scale genomics

polars-bio: High-Performance Python DataFrame Operations for Genomics

Thank You!

Questions ?

polars-bio: High-Performance Python DataFrame Operations for Genomics 30/30

